Matches in SemOpenAlex for { <https://semopenalex.org/work/W919683003> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W919683003 abstract "In the first part of the thesis we define an automorphism φn for each star graphStn of degree n − 1, which yields permutations of labels for the edges of Stntaken from the set of integers {1, . . . , bn/2c}. By decomposing these permutationsinto permutation cycles, we are able to identify edge-disjoint Hamilton cyclesthat are automorphic images of a known two-labelled Hamilton cycle H1 2(n)in Stn. Our main result is an improvement from the existing lower bound ofbϕ(n)/10c to b2ϕ(n)/9c, where ϕ is Euler’s totient function, for the known numberof edge-disjoint Hamilton cycles in Stn for all odd integers n. For prime n, theimprovement is from bn/8c to bn/5c. We extend this result to the cases when nis the power of a prime other than 3 and 7.The second part of the thesis studies ‘symmetric’ collections of edge-disjointHamilton cycles in Stn, i.e. collections that comprise images of H1 2(n) undergeneral label-mapping automorphisms. We show that, for all even n, there existsa symmetric collection of bϕ(n)/2c edge-disjoint Hamilton cycles, and Stn cannothave symmetric collections of greater than bϕ(n)/2c such cycles for any n. Thus,Stn is not symmetrically Hamilton decomposable if n is not prime. We also givecases of even n, in terms of Carmichael’s reduced totient function λ, for which‘strongly’ symmetric collections of edge-disjoint Hamilton cycles, which are generatedfrom H1 2(n) by a single automorphism, can and cannot attain the optimumbound bϕ(n)/2c for symmetric collections. In particular, we show that if n is apower of 2, then Stn has a spanning subgraph with more than half of the edgesof Stn, which is strongly symmetrically Hamilton decomposable. For odd n, it remainsan open problem as to whether the bϕ(n)/2c can be achieved for symmetriccollections, but we are able to show that, for certain odd n, a ϕ(n)/4 bound isachievable and optimal for strongly symmetric collections.The search for edge-disjoint Hamilton cycles in star graphs is important for thedesign of interconnection network topologies in computer science. All our resultsimprove on the known bounds for numbers of any kind of edge-disjoint Hamiltoncycles in star graphs." @default.
- W919683003 created "2016-06-24" @default.
- W919683003 creator A5025894616 @default.
- W919683003 date "2015-01-01" @default.
- W919683003 modified "2023-09-22" @default.
- W919683003 title "Automorphisms generating disjoint Hamilton cycles in star graphs" @default.
- W919683003 cites W122895542 @default.
- W919683003 cites W1496801598 @default.
- W919683003 cites W1569127830 @default.
- W919683003 cites W1964901889 @default.
- W919683003 cites W1965129454 @default.
- W919683003 cites W1968370809 @default.
- W919683003 cites W1987220346 @default.
- W919683003 cites W1989546358 @default.
- W919683003 cites W1992220284 @default.
- W919683003 cites W1997748822 @default.
- W919683003 cites W1999192582 @default.
- W919683003 cites W1999212995 @default.
- W919683003 cites W1999761254 @default.
- W919683003 cites W2001087611 @default.
- W919683003 cites W2012468806 @default.
- W919683003 cites W2015805499 @default.
- W919683003 cites W2017221079 @default.
- W919683003 cites W2036055324 @default.
- W919683003 cites W2037331568 @default.
- W919683003 cites W2038942113 @default.
- W919683003 cites W2041888647 @default.
- W919683003 cites W2042747061 @default.
- W919683003 cites W2047316746 @default.
- W919683003 cites W2054361179 @default.
- W919683003 cites W2064946106 @default.
- W919683003 cites W2080240775 @default.
- W919683003 cites W2086446504 @default.
- W919683003 cites W2139833071 @default.
- W919683003 cites W2149025218 @default.
- W919683003 cites W2152423254 @default.
- W919683003 cites W2158536469 @default.
- W919683003 cites W2407505791 @default.
- W919683003 cites W2587668641 @default.
- W919683003 cites W3195603352 @default.
- W919683003 cites W42780094 @default.
- W919683003 hasPublicationYear "2015" @default.
- W919683003 type Work @default.
- W919683003 sameAs 919683003 @default.
- W919683003 citedByCount "0" @default.
- W919683003 crossrefType "dissertation" @default.
- W919683003 hasAuthorship W919683003A5025894616 @default.
- W919683003 hasConcept C114614502 @default.
- W919683003 hasConcept C118615104 @default.
- W919683003 hasConcept C118712358 @default.
- W919683003 hasConcept C121332964 @default.
- W919683003 hasConcept C134306372 @default.
- W919683003 hasConcept C198944804 @default.
- W919683003 hasConcept C21308566 @default.
- W919683003 hasConcept C24890656 @default.
- W919683003 hasConcept C2780897414 @default.
- W919683003 hasConcept C33923547 @default.
- W919683003 hasConcept C45340560 @default.
- W919683003 hasConcept C62884695 @default.
- W919683003 hasConceptScore W919683003C114614502 @default.
- W919683003 hasConceptScore W919683003C118615104 @default.
- W919683003 hasConceptScore W919683003C118712358 @default.
- W919683003 hasConceptScore W919683003C121332964 @default.
- W919683003 hasConceptScore W919683003C134306372 @default.
- W919683003 hasConceptScore W919683003C198944804 @default.
- W919683003 hasConceptScore W919683003C21308566 @default.
- W919683003 hasConceptScore W919683003C24890656 @default.
- W919683003 hasConceptScore W919683003C2780897414 @default.
- W919683003 hasConceptScore W919683003C33923547 @default.
- W919683003 hasConceptScore W919683003C45340560 @default.
- W919683003 hasConceptScore W919683003C62884695 @default.
- W919683003 hasLocation W9196830031 @default.
- W919683003 hasOpenAccess W919683003 @default.
- W919683003 hasPrimaryLocation W9196830031 @default.
- W919683003 hasRelatedWork W1972853112 @default.
- W919683003 hasRelatedWork W1978538630 @default.
- W919683003 hasRelatedWork W1980112948 @default.
- W919683003 hasRelatedWork W2044043914 @default.
- W919683003 hasRelatedWork W2084773658 @default.
- W919683003 hasRelatedWork W2092867784 @default.
- W919683003 hasRelatedWork W2256184966 @default.
- W919683003 hasRelatedWork W2368287310 @default.
- W919683003 hasRelatedWork W2403821287 @default.
- W919683003 hasRelatedWork W2592462883 @default.
- W919683003 hasRelatedWork W2617201829 @default.
- W919683003 hasRelatedWork W2738994342 @default.
- W919683003 hasRelatedWork W2796710389 @default.
- W919683003 hasRelatedWork W2799884971 @default.
- W919683003 hasRelatedWork W2951180955 @default.
- W919683003 hasRelatedWork W2952689104 @default.
- W919683003 hasRelatedWork W2963531961 @default.
- W919683003 hasRelatedWork W2972280297 @default.
- W919683003 hasRelatedWork W3049185100 @default.
- W919683003 hasRelatedWork W3192684501 @default.
- W919683003 isParatext "false" @default.
- W919683003 isRetracted "false" @default.
- W919683003 magId "919683003" @default.
- W919683003 workType "dissertation" @default.