Matches in SemOpenAlex for { <https://semopenalex.org/work/W9237277> ?p ?o ?g. }
- W9237277 endingPage "30" @default.
- W9237277 startingPage "23" @default.
- W9237277 abstract "Using machine learning techniques for planning is getting increasingly more important in recent years. Various aspects of action models can be induced from data and then exploited for planning. For probabilistic planning, natural candidates are learning of action effects and their probabilities. For expressive formalisms such as PPDDL, this is a difficult problem since they can introduce easily a hidden data problem; the fact that multiple action outcomes may have generated the same experienced state transitions in the data. Furthermore the action effects might be factored such that this problem requires solving a constraint satisfaction problem within an expectation maximization scheme. In this paper we outline how to utilize recent techniques from the field of statistical relational learning for this problem. More specifically, we show how techniques developed for the CPT-L model of relational probabilistic sequences can be applied to the problem of learning probabilities in a PPDDL model. A CPT-L model concisely specify a Markov chain over arbitrary numbers of objects in the domain and simultaneous applications of multiple actions. The use of efficient BDD-style representations allows for fast and efficient learning in such domains. Even efficient online learning is possible as we will show in this paper. We relate to other learning approaches for similar domains and highlight the opportunities for incorporating our approach into architectures that can plan, execute the plan, and learn from the outcomes, in an online and incremental fashion." @default.
- W9237277 created "2016-06-24" @default.
- W9237277 creator A5011868772 @default.
- W9237277 creator A5023752093 @default.
- W9237277 creator A5032266168 @default.
- W9237277 creator A5078136609 @default.
- W9237277 creator A5090948866 @default.
- W9237277 date "2009-08-09" @default.
- W9237277 modified "2023-09-27" @default.
- W9237277 title "From non-deterministic to probabilistic planning with the help of statistical relational learning" @default.
- W9237277 cites W1494688554 @default.
- W9237277 cites W1496780137 @default.
- W9237277 cites W1517360117 @default.
- W9237277 cites W1525180339 @default.
- W9237277 cites W1824971879 @default.
- W9237277 cites W1980035368 @default.
- W9237277 cites W2080267935 @default.
- W9237277 cites W2097772949 @default.
- W9237277 cites W2106086642 @default.
- W9237277 cites W2106216543 @default.
- W9237277 cites W2123233965 @default.
- W9237277 cites W2125838338 @default.
- W9237277 cites W2126834960 @default.
- W9237277 cites W2126902640 @default.
- W9237277 cites W2135457285 @default.
- W9237277 cites W2149390907 @default.
- W9237277 cites W2152669282 @default.
- W9237277 cites W2169180980 @default.
- W9237277 cites W2171918460 @default.
- W9237277 cites W2254376175 @default.
- W9237277 cites W24170294 @default.
- W9237277 cites W249650263 @default.
- W9237277 cites W2497241959 @default.
- W9237277 cites W3087254 @default.
- W9237277 cites W42392872 @default.
- W9237277 cites W55914417 @default.
- W9237277 cites W1492458906 @default.
- W9237277 hasPublicationYear "2009" @default.
- W9237277 type Work @default.
- W9237277 sameAs 9237277 @default.
- W9237277 citedByCount "4" @default.
- W9237277 countsByYear W92372772016 @default.
- W9237277 crossrefType "journal-article" @default.
- W9237277 hasAuthorship W9237277A5011868772 @default.
- W9237277 hasAuthorship W9237277A5023752093 @default.
- W9237277 hasAuthorship W9237277A5032266168 @default.
- W9237277 hasAuthorship W9237277A5078136609 @default.
- W9237277 hasAuthorship W9237277A5090948866 @default.
- W9237277 hasConcept C114289077 @default.
- W9237277 hasConcept C119857082 @default.
- W9237277 hasConcept C121332964 @default.
- W9237277 hasConcept C124101348 @default.
- W9237277 hasConcept C154945302 @default.
- W9237277 hasConcept C171018156 @default.
- W9237277 hasConcept C177877439 @default.
- W9237277 hasConcept C2524010 @default.
- W9237277 hasConcept C2780791683 @default.
- W9237277 hasConcept C32254414 @default.
- W9237277 hasConcept C33923547 @default.
- W9237277 hasConcept C41008148 @default.
- W9237277 hasConcept C49937458 @default.
- W9237277 hasConcept C5655090 @default.
- W9237277 hasConcept C62520636 @default.
- W9237277 hasConcept C77967617 @default.
- W9237277 hasConcept C80444323 @default.
- W9237277 hasConcept C98763669 @default.
- W9237277 hasConceptScore W9237277C114289077 @default.
- W9237277 hasConceptScore W9237277C119857082 @default.
- W9237277 hasConceptScore W9237277C121332964 @default.
- W9237277 hasConceptScore W9237277C124101348 @default.
- W9237277 hasConceptScore W9237277C154945302 @default.
- W9237277 hasConceptScore W9237277C171018156 @default.
- W9237277 hasConceptScore W9237277C177877439 @default.
- W9237277 hasConceptScore W9237277C2524010 @default.
- W9237277 hasConceptScore W9237277C2780791683 @default.
- W9237277 hasConceptScore W9237277C32254414 @default.
- W9237277 hasConceptScore W9237277C33923547 @default.
- W9237277 hasConceptScore W9237277C41008148 @default.
- W9237277 hasConceptScore W9237277C49937458 @default.
- W9237277 hasConceptScore W9237277C5655090 @default.
- W9237277 hasConceptScore W9237277C62520636 @default.
- W9237277 hasConceptScore W9237277C77967617 @default.
- W9237277 hasConceptScore W9237277C80444323 @default.
- W9237277 hasConceptScore W9237277C98763669 @default.
- W9237277 hasLocation W92372771 @default.
- W9237277 hasOpenAccess W9237277 @default.
- W9237277 hasPrimaryLocation W92372771 @default.
- W9237277 hasRelatedWork W1487588218 @default.
- W9237277 hasRelatedWork W1491912604 @default.
- W9237277 hasRelatedWork W1532499468 @default.
- W9237277 hasRelatedWork W1541488571 @default.
- W9237277 hasRelatedWork W1918314482 @default.
- W9237277 hasRelatedWork W2163828439 @default.
- W9237277 hasRelatedWork W2168335549 @default.
- W9237277 hasRelatedWork W2526322177 @default.
- W9237277 hasRelatedWork W2742079690 @default.
- W9237277 hasRelatedWork W2768020679 @default.
- W9237277 hasRelatedWork W2789122432 @default.