Matches in SemOpenAlex for { <https://semopenalex.org/work/W9238972> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W9238972 abstract "Given a set of alternatives and some pairwise comparison values, ranking is a least squares computation on a graph. The graph vertices are the alternatives, with a weighted oriented edge between each pair for which there is a pairwise score. The orientations are arbitrary. The set of edges may be sparse or dense. The basic idea of the computation is very simple and old { come up with a vertex potential such that the potential dierence matches the given edge data. Since an exact match will usually be impossible, one settles for matching the edge data in a least squares sense. This formulation was rst described by Leake in 1976 for ranking football teams [21]. The residual can be further analyzed for discovering inconsistencies in the given pairwise comparison data, and this leads to a second least squares problem. This whole process was formulated recently by Jiang et al. as a Hodge decomposition of the edge values [19]. The second problem, besides being an important renement of the basic least squares ranking, has other potential applications, such as in economics [19]. In a recent breakthrough paper, Koutis et al. [20] showed that symmetric diagonally dominant (SDD) linear systems can be solved in time approaching optimality (we’ll refer to their algorithm as the KMP solver). We rst show as an easy consequence of their result that for an arbitrary graph, the rst least squares problem of ranking can be solved in time approaching optimality using the KMP solver. We show that the second least squares problem involves the Hodge 2-Laplacian, which is dierent from the graph Laplacian. It has not been studied in the theoretical computer science literature. We show that if a graph is the 1-skeleton of a cell complex on a compact surface the second least squares system matrix is also SDD, which implies optimality via KMP. For all the above cases we also give bounds on the number of conjugate gradient iterations required to achieve a given error bound. For the surface graphs we do this rst for boundaryless surface. We show that the system matrix is the same as the graph Laplacian for the dual graph. If the embedding surface does have boundary, then we use Cauchy’s interlacing theorem to give bounds on conjugate gradient iterations required to solve the second problem by patching the holes and using bounds for the boundaryless case. These special cases are important in computational topology, and we show that the least squares problems of ranking are a 2-norm version of the optimal homologous chain problem of computational topology [10]. For a general graph with cells lled in, we show that the second least squares system matrix is, in general, not diagonally dominant. Thus KMP does not apply directly and nothing is known about its spectrum in general. In this case the best approach is to use an iterative Krylov method and we show numerical results for several choices. Krylov methods are also useful for large graphs where the loss of sparsity in forming the system matrix might be a storage issue. The second problem’s system matrix will be in general singular and have a high dimensional kernel equal to the dimension of the second homology which is the number of independent spheres such as tetrahedra amongst the cliques. Krylov methods work in a space orthogonal to the kernel and no kernel modding is required." @default.
- W9238972 created "2016-06-24" @default.
- W9238972 creator A5016423606 @default.
- W9238972 creator A5020053609 @default.
- W9238972 creator A5082491024 @default.
- W9238972 date "2010-11-08" @default.
- W9238972 modified "2023-09-26" @default.
- W9238972 title "Least Squares Ranking on Graphs, Hodge Laplacians, Time Optimality, and Iterative Methods" @default.
- W9238972 cites W1496383623 @default.
- W9238972 cites W1520007244 @default.
- W9238972 cites W1558273801 @default.
- W9238972 cites W1558308955 @default.
- W9238972 cites W1560263223 @default.
- W9238972 cites W1576347883 @default.
- W9238972 cites W1578099820 @default.
- W9238972 cites W1587744656 @default.
- W9238972 cites W1618148629 @default.
- W9238972 cites W1674659126 @default.
- W9238972 cites W1916091028 @default.
- W9238972 cites W1956351353 @default.
- W9238972 cites W1973836644 @default.
- W9238972 cites W1983033166 @default.
- W9238972 cites W2008620264 @default.
- W9238972 cites W2037269571 @default.
- W9238972 cites W2045107949 @default.
- W9238972 cites W2082102112 @default.
- W9238972 cites W2092929058 @default.
- W9238972 cites W2120103450 @default.
- W9238972 cites W2130406232 @default.
- W9238972 cites W2138486270 @default.
- W9238972 cites W2151417892 @default.
- W9238972 cites W2316564661 @default.
- W9238972 cites W2332701672 @default.
- W9238972 cites W2487893106 @default.
- W9238972 cites W2595913167 @default.
- W9238972 cites W2610857016 @default.
- W9238972 cites W2950437322 @default.
- W9238972 cites W3103476862 @default.
- W9238972 cites W594463866 @default.
- W9238972 hasPublicationYear "2010" @default.
- W9238972 type Work @default.
- W9238972 sameAs 9238972 @default.
- W9238972 citedByCount "1" @default.
- W9238972 countsByYear W92389722020 @default.
- W9238972 crossrefType "posted-content" @default.
- W9238972 hasAuthorship W9238972A5016423606 @default.
- W9238972 hasAuthorship W9238972A5020053609 @default.
- W9238972 hasAuthorship W9238972A5082491024 @default.
- W9238972 hasConcept C105795698 @default.
- W9238972 hasConcept C11413529 @default.
- W9238972 hasConcept C114614502 @default.
- W9238972 hasConcept C126255220 @default.
- W9238972 hasConcept C132525143 @default.
- W9238972 hasConcept C184898388 @default.
- W9238972 hasConcept C185429906 @default.
- W9238972 hasConcept C2778770139 @default.
- W9238972 hasConcept C33923547 @default.
- W9238972 hasConcept C45374587 @default.
- W9238972 hasConcept C80899671 @default.
- W9238972 hasConcept C9936470 @default.
- W9238972 hasConceptScore W9238972C105795698 @default.
- W9238972 hasConceptScore W9238972C11413529 @default.
- W9238972 hasConceptScore W9238972C114614502 @default.
- W9238972 hasConceptScore W9238972C126255220 @default.
- W9238972 hasConceptScore W9238972C132525143 @default.
- W9238972 hasConceptScore W9238972C184898388 @default.
- W9238972 hasConceptScore W9238972C185429906 @default.
- W9238972 hasConceptScore W9238972C2778770139 @default.
- W9238972 hasConceptScore W9238972C33923547 @default.
- W9238972 hasConceptScore W9238972C45374587 @default.
- W9238972 hasConceptScore W9238972C80899671 @default.
- W9238972 hasConceptScore W9238972C9936470 @default.
- W9238972 hasLocation W92389721 @default.
- W9238972 hasOpenAccess W9238972 @default.
- W9238972 hasPrimaryLocation W92389721 @default.
- W9238972 hasRelatedWork W1810986334 @default.
- W9238972 hasRelatedWork W2004791924 @default.
- W9238972 hasRelatedWork W2030516786 @default.
- W9238972 hasRelatedWork W2103972604 @default.
- W9238972 hasRelatedWork W2108553206 @default.
- W9238972 hasRelatedWork W2122817170 @default.
- W9238972 hasRelatedWork W2152507413 @default.
- W9238972 hasRelatedWork W2179686847 @default.
- W9238972 hasRelatedWork W2262040526 @default.
- W9238972 hasRelatedWork W2267882932 @default.
- W9238972 hasRelatedWork W2465496138 @default.
- W9238972 hasRelatedWork W2623047213 @default.
- W9238972 hasRelatedWork W2771141647 @default.
- W9238972 hasRelatedWork W2943842518 @default.
- W9238972 hasRelatedWork W2949964558 @default.
- W9238972 hasRelatedWork W2962921430 @default.
- W9238972 hasRelatedWork W2963684688 @default.
- W9238972 hasRelatedWork W3017592686 @default.
- W9238972 hasRelatedWork W2462319175 @default.
- W9238972 hasRelatedWork W3189744293 @default.
- W9238972 isParatext "false" @default.
- W9238972 isRetracted "false" @default.
- W9238972 magId "9238972" @default.
- W9238972 workType "article" @default.