Matches in SemOpenAlex for { <https://semopenalex.org/work/W92662927> ?p ?o ?g. }
- W92662927 endingPage "545" @default.
- W92662927 startingPage "529" @default.
- W92662927 abstract "This paper studies the problem of associating images with descriptive sentences by embedding them in a common latent space. We are interested in learning such embeddings from hundreds of thousands or millions of examples. Unfortunately, it is prohibitively expensive to fully annotate this many training images with ground-truth sentences. Instead, we ask whether we can learn better image-sentence embeddings by augmenting small fully annotated training sets with millions of images that have weak and noisy annotations (titles, tags, or descriptions). After investigating several state-of-the-art scalable embedding methods, we introduce a new algorithm called Stacked Auxiliary Embedding that can successfully transfer knowledge from millions of weakly annotated images to improve the accuracy of retrieval-based image description." @default.
- W92662927 created "2016-06-24" @default.
- W92662927 creator A5005340983 @default.
- W92662927 creator A5042661827 @default.
- W92662927 creator A5048989024 @default.
- W92662927 creator A5055723755 @default.
- W92662927 creator A5086635908 @default.
- W92662927 date "2014-01-01" @default.
- W92662927 modified "2023-10-14" @default.
- W92662927 title "Improving Image-Sentence Embeddings Using Large Weakly Annotated Photo Collections" @default.
- W92662927 cites W1722318740 @default.
- W92662927 cites W1897761818 @default.
- W92662927 cites W1981613567 @default.
- W92662927 cites W1987835821 @default.
- W92662927 cites W2012592962 @default.
- W92662927 cites W2025341678 @default.
- W92662927 cites W2025768430 @default.
- W92662927 cites W2059993991 @default.
- W92662927 cites W2066134726 @default.
- W92662927 cites W2070753207 @default.
- W92662927 cites W2075110006 @default.
- W92662927 cites W2100235303 @default.
- W92662927 cites W2101105183 @default.
- W92662927 cites W2108598243 @default.
- W92662927 cites W2125263373 @default.
- W92662927 cites W2128053425 @default.
- W92662927 cites W2143017621 @default.
- W92662927 cites W2149536503 @default.
- W92662927 cites W2149557440 @default.
- W92662927 cites W2157487986 @default.
- W92662927 cites W2162762921 @default.
- W92662927 cites W2185175083 @default.
- W92662927 cites W4231109964 @default.
- W92662927 cites W4234358918 @default.
- W92662927 cites W4240726888 @default.
- W92662927 cites W4376522650 @default.
- W92662927 cites W68733909 @default.
- W92662927 doi "https://doi.org/10.1007/978-3-319-10593-2_35" @default.
- W92662927 hasPublicationYear "2014" @default.
- W92662927 type Work @default.
- W92662927 sameAs 92662927 @default.
- W92662927 citedByCount "215" @default.
- W92662927 countsByYear W926629272013 @default.
- W92662927 countsByYear W926629272014 @default.
- W92662927 countsByYear W926629272015 @default.
- W92662927 countsByYear W926629272016 @default.
- W92662927 countsByYear W926629272017 @default.
- W92662927 countsByYear W926629272018 @default.
- W92662927 countsByYear W926629272019 @default.
- W92662927 countsByYear W926629272020 @default.
- W92662927 countsByYear W926629272021 @default.
- W92662927 countsByYear W926629272022 @default.
- W92662927 countsByYear W926629272023 @default.
- W92662927 crossrefType "book-chapter" @default.
- W92662927 hasAuthorship W92662927A5005340983 @default.
- W92662927 hasAuthorship W92662927A5042661827 @default.
- W92662927 hasAuthorship W92662927A5048989024 @default.
- W92662927 hasAuthorship W92662927A5055723755 @default.
- W92662927 hasAuthorship W92662927A5086635908 @default.
- W92662927 hasBestOaLocation W926629271 @default.
- W92662927 hasConcept C111919701 @default.
- W92662927 hasConcept C115961682 @default.
- W92662927 hasConcept C146849305 @default.
- W92662927 hasConcept C153180895 @default.
- W92662927 hasConcept C154945302 @default.
- W92662927 hasConcept C1667742 @default.
- W92662927 hasConcept C204321447 @default.
- W92662927 hasConcept C23123220 @default.
- W92662927 hasConcept C2777530160 @default.
- W92662927 hasConcept C2778572836 @default.
- W92662927 hasConcept C41008148 @default.
- W92662927 hasConcept C41608201 @default.
- W92662927 hasConcept C48044578 @default.
- W92662927 hasConcept C77088390 @default.
- W92662927 hasConceptScore W92662927C111919701 @default.
- W92662927 hasConceptScore W92662927C115961682 @default.
- W92662927 hasConceptScore W92662927C146849305 @default.
- W92662927 hasConceptScore W92662927C153180895 @default.
- W92662927 hasConceptScore W92662927C154945302 @default.
- W92662927 hasConceptScore W92662927C1667742 @default.
- W92662927 hasConceptScore W92662927C204321447 @default.
- W92662927 hasConceptScore W92662927C23123220 @default.
- W92662927 hasConceptScore W92662927C2777530160 @default.
- W92662927 hasConceptScore W92662927C2778572836 @default.
- W92662927 hasConceptScore W92662927C41008148 @default.
- W92662927 hasConceptScore W92662927C41608201 @default.
- W92662927 hasConceptScore W92662927C48044578 @default.
- W92662927 hasConceptScore W92662927C77088390 @default.
- W92662927 hasLocation W926629271 @default.
- W92662927 hasOpenAccess W92662927 @default.
- W92662927 hasPrimaryLocation W926629271 @default.
- W92662927 hasRelatedWork W1517743118 @default.
- W92662927 hasRelatedWork W1536471031 @default.
- W92662927 hasRelatedWork W1567338489 @default.
- W92662927 hasRelatedWork W159132833 @default.
- W92662927 hasRelatedWork W1978971213 @default.
- W92662927 hasRelatedWork W2392326565 @default.
- W92662927 hasRelatedWork W3040301513 @default.