Matches in SemOpenAlex for { <https://semopenalex.org/work/W92816013> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W92816013 abstract "Audio signals are represented via the sinusoidal model as a summation of a small number of sinusoids. This approach introduces sparsity to the audio signals in the frequency domain, which is exploited in this paper by applying Compressed Sensing (CS) to this sparse representation. CS allows sampling of signals at a much lower rate than the Nyquist rate if they are sparse in some basis. In this manner, a novel sinusoidal audio coding approach is proposed, which differs in philosophy from current state-of-the-art methods which encode the sinusoidal parameters (amplitude, frequency, phase) directly. It is shown here that encouraging results can be obtained by this approach, although inferior at this point compared to state-of-the-art. Several practical implementation issues are discussed, such as quantization of the CS samples, frequency resolution vs. coding gain, error checking, etc., and directions for future research in this framework are proposed. I. I NTRODUCTION The growing demand for audio content far outpaces the corre- sponding growth in users' storage space or bandwidth. Thus t here is a constant incentive to further improve the compression of audio signals. This can be accomplished either by applying compression algorithms to the actual samples of a digital audio signal, o r initially using a signal model and then encoding the model parameters as a second step. In this paper, we explore a novel method for encoding the parameters of the sinusoidal model (1). The sinusoidal model represents an audio signal using a small number of time-varying sinusoids. The remainder error signal— often termed the residual signal—can also be modelled to further improve the resulting subjective quality of the sinusoidal model (2). The sinusoidal model allows for a compact representation of the original signal and for efficient encoding and quantization . State- of-the-art methods of encoding and compressing the parameters of the sinusoidal model (amplitudes, frequencies, phases) are based on directly encoding these parameters (3)-(6). In this paper, we propose using the emerging compressed sensing (CS) (7), (8) methodology to encode and compress the sinusoidally-modelled audio signals. Compressed sensing seeks to represent a signal using a number of linear, non-adaptive measurements. Usually the number of measure- ments is much lower than the number of samples needed if the signal is sampled at the Nyquist rate. CS requires that the signal is very sparse in some basis—in the sense that it is a linear combination of a small number of basis functions—in order to correctly reconstruct the original signal. Clearly, the sinusoidally-modelled p art of an audio signal is a sparse signal, and it is thus natural to wonder how CS might be used to encode such a signal. Our method encodes the time-domain signal instead of the sinu- soidal model parameters as state-of-art methods propose (3)-(6). The advantage is that the encoding operation is simplified into r andomly sampling the time-domain sinusoidal signal, which is obtained after applying a psychoacoustic sinusoidal model to a monophonic audio signal. The random samples can be further encoded (here scalar quantization is suggested, but other methods could be used to im- prove performance). Additional advantages are that CS has inherent encryption and robustness to channel errors, and scales well to multi- channel cases. An issue that arises here is that as the encodi ng is performed in the time-domain—rather than the Fourier domain—the quantization error is not localized in frequency, and it is t herefore more complicated to predict the audio quality of the reconstructed signal. At this point, it is noted that the paper deals only wi th encoding the sinusoidal part of the model. This is to our knowledge the first attempt to exploit the sparse representation of the sinusoidal model for audio signals using compressed sensing, and it is shown here that several interesting questions arise in this conte xt." @default.
- W92816013 created "2016-06-24" @default.
- W92816013 creator A5004816763 @default.
- W92816013 creator A5029573067 @default.
- W92816013 creator A5060388738 @default.
- W92816013 creator A5082426835 @default.
- W92816013 creator A5087902244 @default.
- W92816013 date "2009-04-06" @default.
- W92816013 modified "2023-09-27" @default.
- W92816013 title "Exploiting the Sparsity of the Sinusoidal Model Using Compressed Sensing for Audio Coding" @default.
- W92816013 cites W1588594383 @default.
- W92816013 cites W2004544971 @default.
- W92816013 cites W2127271355 @default.
- W92816013 cites W2128365233 @default.
- W92816013 cites W2130634367 @default.
- W92816013 cites W2131722845 @default.
- W92816013 cites W2145096794 @default.
- W92816013 cites W2151260162 @default.
- W92816013 cites W2163795169 @default.
- W92816013 cites W2164764235 @default.
- W92816013 cites W2244925781 @default.
- W92816013 cites W2296616510 @default.
- W92816013 cites W2542170364 @default.
- W92816013 hasPublicationYear "2009" @default.
- W92816013 type Work @default.
- W92816013 sameAs 92816013 @default.
- W92816013 citedByCount "3" @default.
- W92816013 crossrefType "journal-article" @default.
- W92816013 hasAuthorship W92816013A5004816763 @default.
- W92816013 hasAuthorship W92816013A5029573067 @default.
- W92816013 hasAuthorship W92816013A5060388738 @default.
- W92816013 hasAuthorship W92816013A5082426835 @default.
- W92816013 hasAuthorship W92816013A5087902244 @default.
- W92816013 hasConcept C105795698 @default.
- W92816013 hasConcept C106131492 @default.
- W92816013 hasConcept C11413529 @default.
- W92816013 hasConcept C124851039 @default.
- W92816013 hasConcept C13895895 @default.
- W92816013 hasConcept C140779682 @default.
- W92816013 hasConcept C167940747 @default.
- W92816013 hasConcept C179518139 @default.
- W92816013 hasConcept C28490314 @default.
- W92816013 hasConcept C28855332 @default.
- W92816013 hasConcept C31972630 @default.
- W92816013 hasConcept C33923547 @default.
- W92816013 hasConcept C41008148 @default.
- W92816013 hasConcept C64922751 @default.
- W92816013 hasConcept C65914096 @default.
- W92816013 hasConcept C78548338 @default.
- W92816013 hasConcept C87687168 @default.
- W92816013 hasConcept C98526533 @default.
- W92816013 hasConceptScore W92816013C105795698 @default.
- W92816013 hasConceptScore W92816013C106131492 @default.
- W92816013 hasConceptScore W92816013C11413529 @default.
- W92816013 hasConceptScore W92816013C124851039 @default.
- W92816013 hasConceptScore W92816013C13895895 @default.
- W92816013 hasConceptScore W92816013C140779682 @default.
- W92816013 hasConceptScore W92816013C167940747 @default.
- W92816013 hasConceptScore W92816013C179518139 @default.
- W92816013 hasConceptScore W92816013C28490314 @default.
- W92816013 hasConceptScore W92816013C28855332 @default.
- W92816013 hasConceptScore W92816013C31972630 @default.
- W92816013 hasConceptScore W92816013C33923547 @default.
- W92816013 hasConceptScore W92816013C41008148 @default.
- W92816013 hasConceptScore W92816013C64922751 @default.
- W92816013 hasConceptScore W92816013C65914096 @default.
- W92816013 hasConceptScore W92816013C78548338 @default.
- W92816013 hasConceptScore W92816013C87687168 @default.
- W92816013 hasConceptScore W92816013C98526533 @default.
- W92816013 hasLocation W928160131 @default.
- W92816013 hasOpenAccess W92816013 @default.
- W92816013 hasPrimaryLocation W928160131 @default.
- W92816013 hasRelatedWork W1505714377 @default.
- W92816013 hasRelatedWork W1559450439 @default.
- W92816013 hasRelatedWork W1993770811 @default.
- W92816013 hasRelatedWork W2028605422 @default.
- W92816013 hasRelatedWork W2057366452 @default.
- W92816013 hasRelatedWork W2073208564 @default.
- W92816013 hasRelatedWork W2104840517 @default.
- W92816013 hasRelatedWork W2149642216 @default.
- W92816013 hasRelatedWork W2149857771 @default.
- W92816013 hasRelatedWork W2161251076 @default.
- W92816013 hasRelatedWork W2165620753 @default.
- W92816013 hasRelatedWork W2168241528 @default.
- W92816013 hasRelatedWork W2246278115 @default.
- W92816013 hasRelatedWork W53784726 @default.
- W92816013 hasRelatedWork W812968423 @default.
- W92816013 hasRelatedWork W2029435425 @default.
- W92816013 hasRelatedWork W2066499604 @default.
- W92816013 hasRelatedWork W2212188177 @default.
- W92816013 hasRelatedWork W2774130357 @default.
- W92816013 hasRelatedWork W2858851717 @default.
- W92816013 isParatext "false" @default.
- W92816013 isRetracted "false" @default.
- W92816013 magId "92816013" @default.
- W92816013 workType "article" @default.