Matches in SemOpenAlex for { <https://semopenalex.org/work/W930232777> ?p ?o ?g. }
- W930232777 abstract "Learning an appropriate feature representation across source and target domains is one of the most effective solutions to domain adaptation problems. Conventional cross-domain feature learning methods rely on the Reproducing Kernel Hilbert Space (RKHS) induced by a single kernel. Recently, Multiple Kernel Learning (MKL), which bases classifiers on combinations of kernels, has shown improved performance in the tasks without distribution difference between domains. In this paper, we generalize the framework of MKL for cross-domain feature learning and propose a novel Transfer Feature Representation (TFR) algorithm. TFR learns a convex combination of multiple kernels and a linear transformation in a single optimization which integrates the minimization of distribution difference with the preservation of discriminating power across domains. As a result, standard machine learning models trained in the source domain can be reused for the target domain data. After rewritten into a differentiable formulation, TFR can be optimized by a reduced gradient method and reaches the convergence. Experiments in two real-world applications verify the effectiveness of our proposed method." @default.
- W930232777 created "2016-06-24" @default.
- W930232777 creator A5002497075 @default.
- W930232777 creator A5034855502 @default.
- W930232777 creator A5046597133 @default.
- W930232777 creator A5071938296 @default.
- W930232777 date "2015-02-21" @default.
- W930232777 modified "2023-09-23" @default.
- W930232777 title "Transfer Feature Representation via Multiple Kernel Learning" @default.
- W930232777 cites W1511160855 @default.
- W930232777 cites W158095270 @default.
- W930232777 cites W1722318740 @default.
- W930232777 cites W1998894210 @default.
- W930232777 cites W1999693420 @default.
- W930232777 cites W2000125728 @default.
- W930232777 cites W2031823405 @default.
- W930232777 cites W2033419168 @default.
- W930232777 cites W2096943734 @default.
- W930232777 cites W2107298017 @default.
- W930232777 cites W2107388088 @default.
- W930232777 cites W2115403315 @default.
- W930232777 cites W2120149881 @default.
- W930232777 cites W2120354757 @default.
- W930232777 cites W2121647436 @default.
- W930232777 cites W2140095548 @default.
- W930232777 cites W2148694408 @default.
- W930232777 cites W2149466042 @default.
- W930232777 cites W2149676790 @default.
- W930232777 cites W2162854380 @default.
- W930232777 cites W2163771264 @default.
- W930232777 cites W2164943005 @default.
- W930232777 cites W2165698076 @default.
- W930232777 cites W2169278871 @default.
- W930232777 cites W2266946488 @default.
- W930232777 cites W2296319761 @default.
- W930232777 cites W2914746235 @default.
- W930232777 cites W57215181 @default.
- W930232777 cites W665341 @default.
- W930232777 doi "https://doi.org/10.1609/aaai.v29i1.9586" @default.
- W930232777 hasPublicationYear "2015" @default.
- W930232777 type Work @default.
- W930232777 sameAs 930232777 @default.
- W930232777 citedByCount "5" @default.
- W930232777 countsByYear W9302327772016 @default.
- W930232777 countsByYear W9302327772018 @default.
- W930232777 countsByYear W9302327772020 @default.
- W930232777 crossrefType "journal-article" @default.
- W930232777 hasAuthorship W930232777A5002497075 @default.
- W930232777 hasAuthorship W930232777A5034855502 @default.
- W930232777 hasAuthorship W930232777A5046597133 @default.
- W930232777 hasAuthorship W930232777A5071938296 @default.
- W930232777 hasBestOaLocation W9302327771 @default.
- W930232777 hasConcept C114614502 @default.
- W930232777 hasConcept C119857082 @default.
- W930232777 hasConcept C122280245 @default.
- W930232777 hasConcept C12267149 @default.
- W930232777 hasConcept C134306372 @default.
- W930232777 hasConcept C134517425 @default.
- W930232777 hasConcept C138885662 @default.
- W930232777 hasConcept C140417398 @default.
- W930232777 hasConcept C150899416 @default.
- W930232777 hasConcept C153180895 @default.
- W930232777 hasConcept C154945302 @default.
- W930232777 hasConcept C17744445 @default.
- W930232777 hasConcept C199539241 @default.
- W930232777 hasConcept C2776359362 @default.
- W930232777 hasConcept C2776401178 @default.
- W930232777 hasConcept C2776879701 @default.
- W930232777 hasConcept C33923547 @default.
- W930232777 hasConcept C36503486 @default.
- W930232777 hasConcept C41008148 @default.
- W930232777 hasConcept C41895202 @default.
- W930232777 hasConcept C59404180 @default.
- W930232777 hasConcept C62799726 @default.
- W930232777 hasConcept C74193536 @default.
- W930232777 hasConcept C80884492 @default.
- W930232777 hasConcept C83665646 @default.
- W930232777 hasConcept C94625758 @default.
- W930232777 hasConceptScore W930232777C114614502 @default.
- W930232777 hasConceptScore W930232777C119857082 @default.
- W930232777 hasConceptScore W930232777C122280245 @default.
- W930232777 hasConceptScore W930232777C12267149 @default.
- W930232777 hasConceptScore W930232777C134306372 @default.
- W930232777 hasConceptScore W930232777C134517425 @default.
- W930232777 hasConceptScore W930232777C138885662 @default.
- W930232777 hasConceptScore W930232777C140417398 @default.
- W930232777 hasConceptScore W930232777C150899416 @default.
- W930232777 hasConceptScore W930232777C153180895 @default.
- W930232777 hasConceptScore W930232777C154945302 @default.
- W930232777 hasConceptScore W930232777C17744445 @default.
- W930232777 hasConceptScore W930232777C199539241 @default.
- W930232777 hasConceptScore W930232777C2776359362 @default.
- W930232777 hasConceptScore W930232777C2776401178 @default.
- W930232777 hasConceptScore W930232777C2776879701 @default.
- W930232777 hasConceptScore W930232777C33923547 @default.
- W930232777 hasConceptScore W930232777C36503486 @default.
- W930232777 hasConceptScore W930232777C41008148 @default.
- W930232777 hasConceptScore W930232777C41895202 @default.
- W930232777 hasConceptScore W930232777C59404180 @default.
- W930232777 hasConceptScore W930232777C62799726 @default.