Matches in SemOpenAlex for { <https://semopenalex.org/work/W9304517> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W9304517 abstract "This dissertation considers the application of genetic algorithms (GAs) to the automatic generation of fuzzy process controllers, where each controller is represented as an unordered list of an arbitrary number of rules. This produces a faithful and parsimonious representation of the underlying fuzzy structure. The algorithm evolves both the composition and size of the rule base from randomness. Evolving controllers in the form of a rule base offers unique flexibility exceeding that of prior genetic efforts in which lists of parameters evolve under a fixed set of membership functions, or tables of output values evolve to a fixed set of physical system configurations.The key to this methodology is the observation that the genetic algorithm does not merely evolve bit strings, but operates over a higher-level space of control rules. Both aspects are factors in the learning algorithm. To preserve rule integrity in a reproducing pair of strings, the combined loci must match semantically. This was the obstacle that hindered prior rule-based genetic-fuzzy approaches. Semantic matching is accomplished by aligning similar rules in the two parent strings before recombination. In addition, the crossover and mutation rates are specified as ranges rather than single numbers, and are keyed to rules rather than bits since the degree to which a rule is disrupted should be independent of its length.The internal mechanism presiding to the evolution of successful controllers is examined and the methodology is applied to several nonlinear control problems--three variations on the benchmark cart-pole problem, a boat rudder controller, and an airplane autolander. This methodology has great potential for scalability since string size varies with the number of rules and not the number of variables or partitions. Finally, the method's generality permits its further application to the evolution of any system that can be specified as a set of rules." @default.
- W9304517 created "2016-06-24" @default.
- W9304517 creator A5056442971 @default.
- W9304517 date "1994-09-01" @default.
- W9304517 modified "2023-09-23" @default.
- W9304517 title "Genetic design of rule-based fuzzy controllers" @default.
- W9304517 hasPublicationYear "1994" @default.
- W9304517 type Work @default.
- W9304517 sameAs 9304517 @default.
- W9304517 citedByCount "18" @default.
- W9304517 countsByYear W93045172013 @default.
- W9304517 countsByYear W93045172014 @default.
- W9304517 countsByYear W93045172015 @default.
- W9304517 countsByYear W93045172017 @default.
- W9304517 crossrefType "journal-article" @default.
- W9304517 hasAuthorship W9304517A5056442971 @default.
- W9304517 hasConcept C105795698 @default.
- W9304517 hasConcept C11413529 @default.
- W9304517 hasConcept C122507166 @default.
- W9304517 hasConcept C125112378 @default.
- W9304517 hasConcept C126255220 @default.
- W9304517 hasConcept C13280743 @default.
- W9304517 hasConcept C154945302 @default.
- W9304517 hasConcept C177264268 @default.
- W9304517 hasConcept C185798385 @default.
- W9304517 hasConcept C195975749 @default.
- W9304517 hasConcept C199360897 @default.
- W9304517 hasConcept C203479927 @default.
- W9304517 hasConcept C205649164 @default.
- W9304517 hasConcept C2780049643 @default.
- W9304517 hasConcept C33923547 @default.
- W9304517 hasConcept C41008148 @default.
- W9304517 hasConcept C58166 @default.
- W9304517 hasConcept C6557445 @default.
- W9304517 hasConcept C86803240 @default.
- W9304517 hasConcept C8880873 @default.
- W9304517 hasConceptScore W9304517C105795698 @default.
- W9304517 hasConceptScore W9304517C11413529 @default.
- W9304517 hasConceptScore W9304517C122507166 @default.
- W9304517 hasConceptScore W9304517C125112378 @default.
- W9304517 hasConceptScore W9304517C126255220 @default.
- W9304517 hasConceptScore W9304517C13280743 @default.
- W9304517 hasConceptScore W9304517C154945302 @default.
- W9304517 hasConceptScore W9304517C177264268 @default.
- W9304517 hasConceptScore W9304517C185798385 @default.
- W9304517 hasConceptScore W9304517C195975749 @default.
- W9304517 hasConceptScore W9304517C199360897 @default.
- W9304517 hasConceptScore W9304517C203479927 @default.
- W9304517 hasConceptScore W9304517C205649164 @default.
- W9304517 hasConceptScore W9304517C2780049643 @default.
- W9304517 hasConceptScore W9304517C33923547 @default.
- W9304517 hasConceptScore W9304517C41008148 @default.
- W9304517 hasConceptScore W9304517C58166 @default.
- W9304517 hasConceptScore W9304517C6557445 @default.
- W9304517 hasConceptScore W9304517C86803240 @default.
- W9304517 hasConceptScore W9304517C8880873 @default.
- W9304517 hasLocation W93045171 @default.
- W9304517 hasOpenAccess W9304517 @default.
- W9304517 hasPrimaryLocation W93045171 @default.
- W9304517 hasRelatedWork W1539082303 @default.
- W9304517 hasRelatedWork W15608622 @default.
- W9304517 hasRelatedWork W166544200 @default.
- W9304517 hasRelatedWork W186540884 @default.
- W9304517 hasRelatedWork W1969072685 @default.
- W9304517 hasRelatedWork W1972408043 @default.
- W9304517 hasRelatedWork W2121896795 @default.
- W9304517 hasRelatedWork W2122961022 @default.
- W9304517 hasRelatedWork W2124558672 @default.
- W9304517 hasRelatedWork W2140269735 @default.
- W9304517 hasRelatedWork W2140593007 @default.
- W9304517 hasRelatedWork W2171499307 @default.
- W9304517 hasRelatedWork W2373963109 @default.
- W9304517 hasRelatedWork W2387383427 @default.
- W9304517 hasRelatedWork W2548524875 @default.
- W9304517 hasRelatedWork W2962960403 @default.
- W9304517 hasRelatedWork W618782985 @default.
- W9304517 hasRelatedWork W2284980960 @default.
- W9304517 hasRelatedWork W2481634117 @default.
- W9304517 hasRelatedWork W58912307 @default.
- W9304517 isParatext "false" @default.
- W9304517 isRetracted "false" @default.
- W9304517 magId "9304517" @default.
- W9304517 workType "article" @default.