Matches in SemOpenAlex for { <https://semopenalex.org/work/W93222570> ?p ?o ?g. }
- W93222570 abstract "An Approach with Vertical Guidance (APV) is an instrument approach procedure which provides horizontal and vertical guidance to a pilot on approach to landing in reduced visibility conditions. APV approaches can greatly reduce the safety risk to general aviation by improving the pilot’s situational awareness. In particular the incidence of Controlled Flight Into Terrain (CFIT) which has occurred in a number of fatal air crashes in general aviation over the past decade in Australia, can be reduced. APV approaches can also improve general aviation operations. If implemented at Australian airports, APV approach procedures are expected to bring a cost saving of millions of dollars to the economy due to fewer missed approaches, diversions and an increased safety benefit.The provision of accurate horizontal and vertical guidance is achievable using the Global Positioning System (GPS). Because aviation is a safety of life application, an aviation-certified GPS receiver must have integrity monitoring or augmentation to ensure that its navigation solution can be trusted. However, the difficulty with the current GPS satellite constellation alone meeting APV integrity requirements, the susceptibility of GPS to jamming or interference and the potential shortcomings of proposed augmentation solutions for Australia such as the Ground-based Regional Augmentation System (GRAS) justifies the investigation of Aircraft Based Augmentation Systems (ABAS) as an alternative integrity solution for general aviation.ABAS augments GPS with other sensors at the aircraft to help it meet the integrity requirements. Typical ABAS designs assume high quality inertial sensors to provide an accurate reference trajectory for Kalman filters. Unfortunately high-quality inertial sensors are too expensive for general aviation. In contrast to these approaches the purpose of this research is to investigate fusing GPS with lower-cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) and a mathematical model of aircraft dynamics, referred to as an Aircraft Dynamic Model (ADM) in this thesis. Using a model of aircraft dynamics in navigation systems has been studied before in the available literature and shown to be useful particularly for aiding inertial coasting or attitude determination. In contrast to these applications, this thesis investigates its use in ABAS.This thesis presents an ABAS architecture concept which makes use of a MEMS IMU and ADM, named the General Aviation GPS Integrity System (GAGIS) for convenience. GAGIS includes a GPS, MEMS IMU, ADM, a bank of Extended Kalman Filters (EKF) and uses the Normalized Solution Separation (NSS) method for fault detection. The GPS, IMU and ADM information is fused together in a tightly-coupled configuration, with frequent GPS updates applied to correct the IMU and ADM. The use of both IMU and ADM allows for a number of different possible configurations. Three are investigated in this thesis; a GPS-IMU EKF, a GPS-ADM EKF and a GPS-IMU-ADM EKF. The integrity monitoring performance of the GPS-IMU EKF, GPS-ADM EKF and GPS-IMU-ADM EKF architectures are compared against each other and against a stand-alone GPS architecture in a series of computer simulation tests of an APV approach. Typical GPS, IMU, ADM and environmental errors are simulated. The simulation results show the GPS integrity monitoring performance achievable by augmenting GPS with an ADM and low-cost IMU for a general aviation aircraft on an APV approach. A contribution to research is made in determining whether a low-cost IMU or ADM can provide improved integrity monitoring performance over stand-alone GPS. It is found that a reduction of approximately 50% in protection levels is possible using the GPS-IMU EKF or GPS-ADM EKF as well as faster detection of a slowly growing ramp fault on a GPS pseudorange measurement. A second contribution is made in determining how augmenting GPS with an ADM compares to using a low-cost IMU. By comparing the results for the GPS-ADM EKF against the GPS-IMU EKF it is found that protection levels for the GPS-ADM EKF were only approximately 2% higher. This indicates that the GPS-ADM EKF may potentially replace the GPS-IMU EKF for integrity monitoring should the IMU ever fail. In this way the ADM may contribute to the navigation system robustness and redundancy.To investigate this further, a third contribution is made in determining whether or not the ADM can function as an IMU replacement to improve navigation system redundancy by investigating the case of three IMU accelerometers failing. It is found that the failed IMU measurements may be supplemented by the ADM and adequate integrity monitoring performance achieved. Besides treating the IMU and ADM separately as in the GPS-IMU EKF and GPS-ADM EKF, a fourth contribution is made in investigating the possibility of fusing the IMU and ADM information together to achieve greater performance than either alone. This is investigated using the GPS-IMU-ADM EKF. It is found that the GPS-IMU-ADM EKF can achieve protection levels approximately 3% lower in the horizontal and 6% lower in the vertical than a GPS-IMU EKF. However this small improvement may not justify the complexity of fusing the IMU with an ADM in practical systems.Affordable ABAS in general aviation may enhance existing GPS-only fault detection solutions or help overcome any outages in augmentation systems such as the Ground-based Regional Augmentation System (GRAS). Countries such as Australia which currently do not have an augmentation solution for general aviation could especially benefit from the economic savings and safety benefits of satellite navigation-based APV approaches." @default.
- W93222570 created "2016-06-24" @default.
- W93222570 creator A5085109979 @default.
- W93222570 date "2009-01-01" @default.
- W93222570 modified "2023-09-26" @default.
- W93222570 title "Investigation of MEMS inertial sensors and aircraft dynamic models in global positioning system integrity monitoring for approaches with vertical guidance" @default.
- W93222570 cites W104178559 @default.
- W93222570 cites W1493051473 @default.
- W93222570 cites W1500564636 @default.
- W93222570 cites W1514642207 @default.
- W93222570 cites W1527862143 @default.
- W93222570 cites W1531532259 @default.
- W93222570 cites W1534966272 @default.
- W93222570 cites W1579591502 @default.
- W93222570 cites W1617396328 @default.
- W93222570 cites W1735722559 @default.
- W93222570 cites W1905223416 @default.
- W93222570 cites W1935555876 @default.
- W93222570 cites W1940722505 @default.
- W93222570 cites W1967724166 @default.
- W93222570 cites W1973131250 @default.
- W93222570 cites W1979154650 @default.
- W93222570 cites W1980266873 @default.
- W93222570 cites W1991289689 @default.
- W93222570 cites W1994641974 @default.
- W93222570 cites W2005149398 @default.
- W93222570 cites W2020934227 @default.
- W93222570 cites W2022646364 @default.
- W93222570 cites W2025270549 @default.
- W93222570 cites W2028613386 @default.
- W93222570 cites W2037539475 @default.
- W93222570 cites W2040885394 @default.
- W93222570 cites W2045854667 @default.
- W93222570 cites W2067131529 @default.
- W93222570 cites W2076734977 @default.
- W93222570 cites W2087612061 @default.
- W93222570 cites W2088669451 @default.
- W93222570 cites W2099159105 @default.
- W93222570 cites W2099719636 @default.
- W93222570 cites W2100591287 @default.
- W93222570 cites W2120787601 @default.
- W93222570 cites W2121699695 @default.
- W93222570 cites W2122065664 @default.
- W93222570 cites W2124437473 @default.
- W93222570 cites W2125275745 @default.
- W93222570 cites W2134769428 @default.
- W93222570 cites W2151611062 @default.
- W93222570 cites W2162513948 @default.
- W93222570 cites W2183475719 @default.
- W93222570 cites W2218551197 @default.
- W93222570 cites W2312438289 @default.
- W93222570 cites W2513261116 @default.
- W93222570 cites W2582044244 @default.
- W93222570 cites W2592165431 @default.
- W93222570 cites W2599280382 @default.
- W93222570 cites W2600334293 @default.
- W93222570 cites W2605444677 @default.
- W93222570 cites W2618680148 @default.
- W93222570 cites W26752759 @default.
- W93222570 cites W2787547983 @default.
- W93222570 cites W3022404379 @default.
- W93222570 cites W3212576435 @default.
- W93222570 cites W3216580779 @default.
- W93222570 cites W591073852 @default.
- W93222570 cites W595336908 @default.
- W93222570 cites W2472568614 @default.
- W93222570 cites W2500254241 @default.
- W93222570 hasPublicationYear "2009" @default.
- W93222570 type Work @default.
- W93222570 sameAs 93222570 @default.
- W93222570 citedByCount "4" @default.
- W93222570 countsByYear W932225702012 @default.
- W93222570 countsByYear W932225702013 @default.
- W93222570 countsByYear W932225702016 @default.
- W93222570 crossrefType "dissertation" @default.
- W93222570 hasAuthorship W93222570A5085109979 @default.
- W93222570 hasConcept C127413603 @default.
- W93222570 hasConcept C128651787 @default.
- W93222570 hasConcept C14279187 @default.
- W93222570 hasConcept C145804949 @default.
- W93222570 hasConcept C146978453 @default.
- W93222570 hasConcept C16345878 @default.
- W93222570 hasConcept C178802073 @default.
- W93222570 hasConcept C2524010 @default.
- W93222570 hasConcept C33923547 @default.
- W93222570 hasConcept C41008148 @default.
- W93222570 hasConcept C504623915 @default.
- W93222570 hasConcept C60229501 @default.
- W93222570 hasConcept C74448152 @default.
- W93222570 hasConcept C76155785 @default.
- W93222570 hasConceptScore W93222570C127413603 @default.
- W93222570 hasConceptScore W93222570C128651787 @default.
- W93222570 hasConceptScore W93222570C14279187 @default.
- W93222570 hasConceptScore W93222570C145804949 @default.
- W93222570 hasConceptScore W93222570C146978453 @default.
- W93222570 hasConceptScore W93222570C16345878 @default.
- W93222570 hasConceptScore W93222570C178802073 @default.
- W93222570 hasConceptScore W93222570C2524010 @default.
- W93222570 hasConceptScore W93222570C33923547 @default.
- W93222570 hasConceptScore W93222570C41008148 @default.