Matches in SemOpenAlex for { <https://semopenalex.org/work/W933755540> ?p ?o ?g. }
- W933755540 abstract "In this thesis, we investigate the admissible rules of intermediate logics. On the one hand, one can characterize the admissibility of rules in certain logic, and on the other hand, one can characterize logics through their admissible rules. We take both approaches, and reach new results in both directions.The first approach can be subdivided into several, more specific questions. First, we investigate the semantics of admissible rules. We show that exact models provide sound and complete semantics for the admissible rules of intermediate logics with the finite model property. Moreover, we give a correspondence between constraints imposed upon order-defined models and the validity of certain rules in said models, including the disjunction property, a weakening thereof, and several variants of the Visser rules. In closing, we prove that finite models can not provide sound and complete semantics for logics of width greater than two that admit one particular variant of the Visser rules. This result encompasses IPC and the logics of bounded branching.Second, we investigate the decidability of the admissible rules of IPC. The novelty here does not lie in the answer, which has been known since the eighties, but in the presentation of the proof. We proceed semantically, introducing a generalization of exact models. Moreover, we effectively characterize projective formulae in the logics of bounded branching and IPC as being those formulae that are closed under the so-called de Jongh rules.Third, we provide a basis for the admissible rules of the logics of bounded branching and the logics of height at most two. In the former logics, the proof proceeds via the above-mentioned characterization of projective formulae. In the latter logics, the proof proceeds via the observation that the totality of formulae on a finite number of variables is finite. Both of the proofs are effective in nature, and both spring from the observation that projectivity can be expressed by means of the closure under certain rules.The second approach is studied in two forms. First, we investigate the unification type of the intermediate logics mentioned above. We show how the information about their admissible rules allows one to prove their unification type to be finitary. We discuss the notion of an admissible approximation, which can roughly be interpreted as the left-adjoint to the inclusion of derivability into admissibility. The logics at hand all enjoy such admissible approximations that are disjunctions of projective formulae.Second, we characterize IPC and each of the logics of bounded branching as being the greatest intermediate logic that admits a particular version of the Visser rules. Analogously, Medvedev’s logic is described as the greatest intermediate logic above Kreisel-Putnam logic that enjoys the disjunction property. The key observation lies in translating the existence of a counter model into a syntactic statement. In this translation, we make essential use of our previously obtained knowledge on the admissible rules of the logics at hand. Moreover, our method allows us to construct refutation systems for all logics mentioned in this paragraph." @default.
- W933755540 created "2016-06-24" @default.
- W933755540 creator A5061498898 @default.
- W933755540 date "2015-05-29" @default.
- W933755540 modified "2023-09-26" @default.
- W933755540 title "Intuitionistic Rules : Admissible Rules of Intermediate Logics" @default.
- W933755540 cites W10208266 @default.
- W933755540 cites W1028909502 @default.
- W933755540 cites W108287753 @default.
- W933755540 cites W1480405493 @default.
- W933755540 cites W1488578548 @default.
- W933755540 cites W1490829364 @default.
- W933755540 cites W1496666004 @default.
- W933755540 cites W1535521146 @default.
- W933755540 cites W153611726 @default.
- W933755540 cites W1537671701 @default.
- W933755540 cites W1549890956 @default.
- W933755540 cites W1557561422 @default.
- W933755540 cites W1568406216 @default.
- W933755540 cites W1573056557 @default.
- W933755540 cites W1581194352 @default.
- W933755540 cites W1699512023 @default.
- W933755540 cites W1768995144 @default.
- W933755540 cites W1973489930 @default.
- W933755540 cites W1981194978 @default.
- W933755540 cites W1981673591 @default.
- W933755540 cites W1983748102 @default.
- W933755540 cites W1986625420 @default.
- W933755540 cites W1999679315 @default.
- W933755540 cites W2008453494 @default.
- W933755540 cites W2008952614 @default.
- W933755540 cites W2014030742 @default.
- W933755540 cites W2023648368 @default.
- W933755540 cites W2028452607 @default.
- W933755540 cites W2031507982 @default.
- W933755540 cites W2036138623 @default.
- W933755540 cites W2038444809 @default.
- W933755540 cites W2039105437 @default.
- W933755540 cites W2039977878 @default.
- W933755540 cites W2049352524 @default.
- W933755540 cites W2049390068 @default.
- W933755540 cites W2056412887 @default.
- W933755540 cites W2064257235 @default.
- W933755540 cites W2077847391 @default.
- W933755540 cites W2081524757 @default.
- W933755540 cites W2083186217 @default.
- W933755540 cites W2091330336 @default.
- W933755540 cites W2096482476 @default.
- W933755540 cites W2101850994 @default.
- W933755540 cites W2108252992 @default.
- W933755540 cites W2113555999 @default.
- W933755540 cites W2115177589 @default.
- W933755540 cites W2121093145 @default.
- W933755540 cites W2132030225 @default.
- W933755540 cites W2147512620 @default.
- W933755540 cites W2152116319 @default.
- W933755540 cites W2154755287 @default.
- W933755540 cites W2164916194 @default.
- W933755540 cites W2166908479 @default.
- W933755540 cites W2170098829 @default.
- W933755540 cites W2170146694 @default.
- W933755540 cites W2202914783 @default.
- W933755540 cites W2243154890 @default.
- W933755540 cites W2325251597 @default.
- W933755540 cites W2332483421 @default.
- W933755540 cites W2527843003 @default.
- W933755540 cites W2529311106 @default.
- W933755540 cites W2581929268 @default.
- W933755540 cites W2908250557 @default.
- W933755540 cites W2911838076 @default.
- W933755540 cites W29549593 @default.
- W933755540 cites W3127823229 @default.
- W933755540 cites W339793796 @default.
- W933755540 cites W392790838 @default.
- W933755540 cites W62016554 @default.
- W933755540 cites W1968163268 @default.
- W933755540 cites W1985481550 @default.
- W933755540 hasPublicationYear "2015" @default.
- W933755540 type Work @default.
- W933755540 sameAs 933755540 @default.
- W933755540 citedByCount "2" @default.
- W933755540 countsByYear W9337555402016 @default.
- W933755540 countsByYear W9337555402018 @default.
- W933755540 crossrefType "dissertation" @default.
- W933755540 hasAuthorship W933755540A5061498898 @default.
- W933755540 hasConcept C111472728 @default.
- W933755540 hasConcept C118615104 @default.
- W933755540 hasConcept C134306372 @default.
- W933755540 hasConcept C136119220 @default.
- W933755540 hasConcept C138885662 @default.
- W933755540 hasConcept C153269930 @default.
- W933755540 hasConcept C154945302 @default.
- W933755540 hasConcept C159985019 @default.
- W933755540 hasConcept C177148314 @default.
- W933755540 hasConcept C184337299 @default.
- W933755540 hasConcept C189950617 @default.
- W933755540 hasConcept C192562407 @default.
- W933755540 hasConcept C199360897 @default.
- W933755540 hasConcept C202444582 @default.
- W933755540 hasConcept C206175624 @default.