Matches in SemOpenAlex for { <https://semopenalex.org/work/W934216699> ?p ?o ?g. }
- W934216699 endingPage "209" @default.
- W934216699 startingPage "195" @default.
- W934216699 abstract "To better predict time series, in this paper the single multiplicative recurrent neuron (SMRN) is constructed by adding feedforward and feedback links at the nodes of the original single multiplicative neuron (SMN). Glowworm swarm optimization (GSO) algorithm as a method for training the parameters of various kinds of neural network models gets easily into locally optimal traps during optimization process and its movement stability is also poor because of no memory about search history. To overcome the aforementioned disadvantages, firstly the linearly declining inertia weight is incorporated into the location update formula of standard GSO (LWGSO). After that in order to further enhance the robustness capability, differential evolution (DE) algorithm is introduced into LWGSO forming LWGSODE. Standard unimodal and multi-modal static test functions in high dimensions have been used to test its properties. The statistically experimental results show that the proposed LWGSODE approach performs much better than basic GSO whatever in terms of solutions precision, robustness or convergence speed. Moreover, the function optimization results are also competitive when compared with other state-of-the-art methods in the literature. Finally, the LWGSODE algorithm is used to train SMRN for time series prediction, and approximation results have improved significantly. All the results obtained reveal the novel SMRN model combined with the proposed LWGSODE algorithm provides a promising means to approximate nonlinear series in the future." @default.
- W934216699 created "2016-06-24" @default.
- W934216699 creator A5028331041 @default.
- W934216699 creator A5075215568 @default.
- W934216699 creator A5076859280 @default.
- W934216699 creator A5089123963 @default.
- W934216699 date "2015-11-01" @default.
- W934216699 modified "2023-09-25" @default.
- W934216699 title "A novel single multiplicative neuron model trained by an improved glowworm swarm optimization algorithm for time series prediction" @default.
- W934216699 cites W1036981403 @default.
- W934216699 cites W1538895518 @default.
- W934216699 cites W1820051232 @default.
- W934216699 cites W1875348914 @default.
- W934216699 cites W1894261052 @default.
- W934216699 cites W1968674232 @default.
- W934216699 cites W1988141348 @default.
- W934216699 cites W1993761638 @default.
- W934216699 cites W1995143515 @default.
- W934216699 cites W1997916999 @default.
- W934216699 cites W2006706382 @default.
- W934216699 cites W2007141058 @default.
- W934216699 cites W2013661632 @default.
- W934216699 cites W2014935608 @default.
- W934216699 cites W2015512846 @default.
- W934216699 cites W2020754962 @default.
- W934216699 cites W2021826571 @default.
- W934216699 cites W2035557119 @default.
- W934216699 cites W2038507465 @default.
- W934216699 cites W2039367850 @default.
- W934216699 cites W2044459470 @default.
- W934216699 cites W2044761660 @default.
- W934216699 cites W2045001586 @default.
- W934216699 cites W2045875044 @default.
- W934216699 cites W2051680981 @default.
- W934216699 cites W2057266588 @default.
- W934216699 cites W2060179935 @default.
- W934216699 cites W2068778851 @default.
- W934216699 cites W2071039496 @default.
- W934216699 cites W2072886346 @default.
- W934216699 cites W2072955302 @default.
- W934216699 cites W2073004501 @default.
- W934216699 cites W2077210701 @default.
- W934216699 cites W2084078358 @default.
- W934216699 cites W2105113966 @default.
- W934216699 cites W2118344647 @default.
- W934216699 cites W2122563501 @default.
- W934216699 cites W2134100244 @default.
- W934216699 cites W2134816084 @default.
- W934216699 cites W2138784882 @default.
- W934216699 cites W2143055330 @default.
- W934216699 cites W2145325712 @default.
- W934216699 cites W2146726073 @default.
- W934216699 cites W2151554678 @default.
- W934216699 cites W2163194931 @default.
- W934216699 cites W2165780329 @default.
- W934216699 cites W2166409353 @default.
- W934216699 doi "https://doi.org/10.1016/j.knosys.2015.07.032" @default.
- W934216699 hasPublicationYear "2015" @default.
- W934216699 type Work @default.
- W934216699 sameAs 934216699 @default.
- W934216699 citedByCount "21" @default.
- W934216699 countsByYear W9342166992016 @default.
- W934216699 countsByYear W9342166992017 @default.
- W934216699 countsByYear W9342166992018 @default.
- W934216699 countsByYear W9342166992019 @default.
- W934216699 countsByYear W9342166992020 @default.
- W934216699 countsByYear W9342166992022 @default.
- W934216699 countsByYear W9342166992023 @default.
- W934216699 crossrefType "journal-article" @default.
- W934216699 hasAuthorship W934216699A5028331041 @default.
- W934216699 hasAuthorship W934216699A5075215568 @default.
- W934216699 hasAuthorship W934216699A5076859280 @default.
- W934216699 hasAuthorship W934216699A5089123963 @default.
- W934216699 hasConcept C104317684 @default.
- W934216699 hasConcept C110407247 @default.
- W934216699 hasConcept C11413529 @default.
- W934216699 hasConcept C121332964 @default.
- W934216699 hasConcept C126255220 @default.
- W934216699 hasConcept C134306372 @default.
- W934216699 hasConcept C143724316 @default.
- W934216699 hasConcept C151730666 @default.
- W934216699 hasConcept C154945302 @default.
- W934216699 hasConcept C158622935 @default.
- W934216699 hasConcept C162324750 @default.
- W934216699 hasConcept C185592680 @default.
- W934216699 hasConcept C2777303404 @default.
- W934216699 hasConcept C33923547 @default.
- W934216699 hasConcept C41008148 @default.
- W934216699 hasConcept C42747912 @default.
- W934216699 hasConcept C50522688 @default.
- W934216699 hasConcept C50644808 @default.
- W934216699 hasConcept C55493867 @default.
- W934216699 hasConcept C62520636 @default.
- W934216699 hasConcept C63479239 @default.
- W934216699 hasConcept C74650414 @default.
- W934216699 hasConcept C86803240 @default.
- W934216699 hasConceptScore W934216699C104317684 @default.
- W934216699 hasConceptScore W934216699C110407247 @default.