Matches in SemOpenAlex for { <https://semopenalex.org/work/W93438566> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W93438566 abstract "In this paper, we consider the problem of implementation of neural network in the context of the level 2 trigger of HESS2 project. We propose a hardware architecture which which takes advantage of high parallelism, pipelining and the intrinsic nature of FPGAs. Neural networks have successfully been implemented in a wide variety of appli- cations and keep on demonstrating their efficiency compared to other classical techniques in pattern recognition and classification. One interesting field in which neural techniques have been of a great interest is the triggering of par- ticles in physics experiments (1),(2) . The triggering specificity consists (i) in taking a decision according to collected events and (ii) in identifying the nature of particles issued from an impact within a collider. These experiences have clearly taken advantage of the neural approach in terms of performances and accuracy. In this article, a solution based on a neural system is proposed in a close domain: the gamma-ray astronomy. The presented results have been developed within the HESS collaboration which is interested in detecting cosmic gamma ray sources all around the universe. The HESS1 experiment (3) is based on the atmo- spheric Cherenkov technique: as a high energy cosmic ray hits the atmosphere, it creates an extensive air shower by interaction with the atmosphere. This phe- nomenon is known as Cherenkov light. The experiment consists in studying this Cherenkov light in order to detect the gamma particles hitting the atmosphere. It thus permits to evaluate the position and nature of the gamma-ray sources. The current HESS1 system (phase 1) is composed of four imaging Cherenkov telescopes, arranged on a square. By combining the information of, at least, two telescopes at the same time, the system makes intensive use of the stereoscopic approach. This enables to significantly increase the performances in terms of high energy particle detection (from 100GeV to 50TeV). One of the main specificities of these experiences resides in its capability of processing huge amount of data in a restricted time window. A trigger system composed of two levels has been designed within the HESS1 experiment: a level 1 (L1) per telescope and a unique central trigger. Such a trigger system is useful to make an on-line selection of relevant events for further off-line processing." @default.
- W93438566 created "2016-06-24" @default.
- W93438566 creator A5016592881 @default.
- W93438566 creator A5065970393 @default.
- W93438566 creator A5067809014 @default.
- W93438566 creator A5084949245 @default.
- W93438566 date "2008-01-01" @default.
- W93438566 modified "2023-10-04" @default.
- W93438566 title "Neural Network hardware architecture for pattern recognition in the HESS2 project" @default.
- W93438566 cites W1509691074 @default.
- W93438566 cites W1661620505 @default.
- W93438566 cites W2116394055 @default.
- W93438566 cites W2159498975 @default.
- W93438566 cites W2615653248 @default.
- W93438566 hasPublicationYear "2008" @default.
- W93438566 type Work @default.
- W93438566 sameAs 93438566 @default.
- W93438566 citedByCount "0" @default.
- W93438566 crossrefType "proceedings-article" @default.
- W93438566 hasAuthorship W93438566A5016592881 @default.
- W93438566 hasAuthorship W93438566A5065970393 @default.
- W93438566 hasAuthorship W93438566A5067809014 @default.
- W93438566 hasAuthorship W93438566A5084949245 @default.
- W93438566 hasConcept C118524514 @default.
- W93438566 hasConcept C123657996 @default.
- W93438566 hasConcept C142362112 @default.
- W93438566 hasConcept C153349607 @default.
- W93438566 hasConcept C154945302 @default.
- W93438566 hasConcept C175202392 @default.
- W93438566 hasConcept C41008148 @default.
- W93438566 hasConcept C50644808 @default.
- W93438566 hasConceptScore W93438566C118524514 @default.
- W93438566 hasConceptScore W93438566C123657996 @default.
- W93438566 hasConceptScore W93438566C142362112 @default.
- W93438566 hasConceptScore W93438566C153349607 @default.
- W93438566 hasConceptScore W93438566C154945302 @default.
- W93438566 hasConceptScore W93438566C175202392 @default.
- W93438566 hasConceptScore W93438566C41008148 @default.
- W93438566 hasConceptScore W93438566C50644808 @default.
- W93438566 hasLocation W934385661 @default.
- W93438566 hasLocation W934385662 @default.
- W93438566 hasLocation W934385663 @default.
- W93438566 hasLocation W934385664 @default.
- W93438566 hasOpenAccess W93438566 @default.
- W93438566 hasPrimaryLocation W934385661 @default.
- W93438566 hasRelatedWork W1584270863 @default.
- W93438566 hasRelatedWork W1595652908 @default.
- W93438566 hasRelatedWork W2104698839 @default.
- W93438566 hasRelatedWork W2131836320 @default.
- W93438566 hasRelatedWork W2376726724 @default.
- W93438566 hasRelatedWork W2386387936 @default.
- W93438566 hasRelatedWork W2603525251 @default.
- W93438566 hasRelatedWork W2941793834 @default.
- W93438566 hasRelatedWork W4285294654 @default.
- W93438566 hasRelatedWork W1629725936 @default.
- W93438566 isParatext "false" @default.
- W93438566 isRetracted "false" @default.
- W93438566 magId "93438566" @default.
- W93438566 workType "article" @default.