Matches in SemOpenAlex for { <https://semopenalex.org/work/W9360671> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W9360671 endingPage "192" @default.
- W9360671 startingPage "185" @default.
- W9360671 abstract "Problems connected with the mathematical description of pure metals solidification (macro approach) are often called the Stefan ones. The second generation models (micro/macro approach) discussed in this paper base on a theory presented by Kolmogoroff (Mehl-Johnson-Avrami-Kolmogoroff models). Both macro and micro/macro problems can be analyzed using the numerical methods. The aim of investigations presented here was a comparison of numerical solutions obtained by use of macro and micro/macro approach. On a stage of numerical modelling the finite difference method has been applied. 1. Governing equations Solidification of pure metals or eutectic alloys proceeds at a constant temperature (solidification point T). The mathematical macroscopic model of the process discussed is called in literature 'the Stefan problem' [1-3]. The domain Ω being a sum of molten metal ) ( 1 t Ω and solid state ) ( 2 t Ω sub-domains is considered. The position of interface ) ( 12 t Γ is time-dependent. So the Stefan problem belongs to a group of moving boundary ones. The temperature field in domain of molten metal is described by the well known Fourier equation [ ] ) , ( ) ( ) , ( ) ( 1 1 1 1 t x T T t t x T T c ∇ λ ∇ = ∂ ∂ (1) where c1, λ1 are the volumetric specific heat and thermal conductivity of material, T, x, t denote the temperature, spatial co-ordinates and time. The similar equation determines the temperature field in a solidified part of metal [ ] ) , ( ) ( ) , ( ) ( 2 2 2 2 t x T T t t x T T c ∇ λ ∇ = ∂ ∂ (2) where c2, λ2 are the volumetric specific heat and thermal conductivity of solid body. It should be pointed out that only heat conduction in Ω is considered (it results from the form of equations (1) and (2)). On the interface ) ( 12 t Γ the following Please cite this article as: Romuald Szopa, Edyta Pawlak, Jaroslaw Siedlecki, Stefan and Kolmogoroff models of solidification. Comparison of numerical solutions, Scientific Research of the Institute of Mathematics and Computer Science, 2008, Volume 7, Issue 1, pages 185-192. The website: http://www.amcm.pcz.pl/ R. Szopa, E. Pawlak, J. Siedlecki 186 boundary condition is taken into account n v L n t x T n t x T + ∂ ∂ λ − = ∂ ∂ λ − ) , ( ) , ( 2 2 1 1 (3) where L is a volumetric latent heat, νn is a solidification rate in a normal direction, n ∂ ∂ denotes a normal derivative (Figure 1). Additionally the temperatures . ) , ( ) , ( * 2 1 T t x T t x T = = Fig. 1. Domain considered On the outer surface of the system the boundary condition in general form 0 ) , ( ), , ( 2 2 = ∂ ∂ Φ n t x T t x T (4) is given. The initial temperature distribution and the initial position of interface are also known. In literature one can find the analytical solution of this problem. They concern the very simple geometrical and boundary conditions. In a practice the problem of pure metals solidification can be solved using the numerical methods. The other approach to the Stefan problem results from the considerations concerning the crystallization processes proceeding in a micro scale (micro/macro model of solidification). Then one considers the following energy equation [ ] t t x f L t x T T t t x T T c S ∂ ∂ + ∇ λ ∇ = ∂ ∂ ) , ( ) , ( ) ( ) , ( ) ( (5) where fS is a volumetric solid state fraction at the point x. The energy equation (5) is the typical Fourier equation with additional term (source function) controlling the evolution of latent heat L, but the capacity of internal heat sources results from the laws determining the nucleation and nuclei 1 Ω 2 Ω" @default.
- W9360671 created "2016-06-24" @default.
- W9360671 creator A5018546495 @default.
- W9360671 creator A5049641608 @default.
- W9360671 creator A5081737329 @default.
- W9360671 date "2008-01-01" @default.
- W9360671 modified "2023-09-27" @default.
- W9360671 title "Stefan and Kolmogoroff models of solidification. Comparison of numerical solutions" @default.
- W9360671 cites W2034334859 @default.
- W9360671 cites W2048399815 @default.
- W9360671 cites W2078644288 @default.
- W9360671 cites W2117402869 @default.
- W9360671 hasPublicationYear "2008" @default.
- W9360671 type Work @default.
- W9360671 sameAs 9360671 @default.
- W9360671 citedByCount "0" @default.
- W9360671 crossrefType "journal-article" @default.
- W9360671 hasAuthorship W9360671A5018546495 @default.
- W9360671 hasAuthorship W9360671A5049641608 @default.
- W9360671 hasAuthorship W9360671A5081737329 @default.
- W9360671 hasConcept C121332964 @default.
- W9360671 hasConcept C134306372 @default.
- W9360671 hasConcept C166955791 @default.
- W9360671 hasConcept C18168003 @default.
- W9360671 hasConcept C185592680 @default.
- W9360671 hasConcept C192562407 @default.
- W9360671 hasConcept C199360897 @default.
- W9360671 hasConcept C202444582 @default.
- W9360671 hasConcept C202787564 @default.
- W9360671 hasConcept C2778021227 @default.
- W9360671 hasConcept C33923547 @default.
- W9360671 hasConcept C36503486 @default.
- W9360671 hasConcept C41008148 @default.
- W9360671 hasConcept C62354387 @default.
- W9360671 hasConcept C8010536 @default.
- W9360671 hasConcept C87976508 @default.
- W9360671 hasConcept C9652623 @default.
- W9360671 hasConcept C97355855 @default.
- W9360671 hasConceptScore W9360671C121332964 @default.
- W9360671 hasConceptScore W9360671C134306372 @default.
- W9360671 hasConceptScore W9360671C166955791 @default.
- W9360671 hasConceptScore W9360671C18168003 @default.
- W9360671 hasConceptScore W9360671C185592680 @default.
- W9360671 hasConceptScore W9360671C192562407 @default.
- W9360671 hasConceptScore W9360671C199360897 @default.
- W9360671 hasConceptScore W9360671C202444582 @default.
- W9360671 hasConceptScore W9360671C202787564 @default.
- W9360671 hasConceptScore W9360671C2778021227 @default.
- W9360671 hasConceptScore W9360671C33923547 @default.
- W9360671 hasConceptScore W9360671C36503486 @default.
- W9360671 hasConceptScore W9360671C41008148 @default.
- W9360671 hasConceptScore W9360671C62354387 @default.
- W9360671 hasConceptScore W9360671C8010536 @default.
- W9360671 hasConceptScore W9360671C87976508 @default.
- W9360671 hasConceptScore W9360671C9652623 @default.
- W9360671 hasConceptScore W9360671C97355855 @default.
- W9360671 hasLocation W93606711 @default.
- W9360671 hasOpenAccess W9360671 @default.
- W9360671 hasPrimaryLocation W93606711 @default.
- W9360671 hasRelatedWork W2082107654 @default.
- W9360671 hasRelatedWork W2211312160 @default.
- W9360671 hasRelatedWork W617241108 @default.
- W9360671 hasRelatedWork W632173404 @default.
- W9360671 hasRelatedWork W649472937 @default.
- W9360671 hasVolume "7" @default.
- W9360671 isParatext "false" @default.
- W9360671 isRetracted "false" @default.
- W9360671 magId "9360671" @default.
- W9360671 workType "article" @default.