Matches in SemOpenAlex for { <https://semopenalex.org/work/W93693442> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W93693442 abstract "Two-dimensional images and three-dimensional volumes have found their way into our life and became a staple ingredient of our artistic, cultural, and scientific appetite. Images capture and immortalize an instance such as natural scenes, through a photograph camera. Moreover, they can capture details inside biological subjects through the use of CT (computer tomography) scans, X-Rays, ultrasound, etc. Three-dimensional volumes of objects are also of high interest in medical imaging, engineering, and analyzing cultural heritage. They are produced using tomographic reconstruction, a technique that combine a large series of 2D scans captured from multiple views. Typically, penetrative radiation is used to obtain each 2D scan: XRays for CT scans, radio-frequency waves for MRI (magnetic resonance imaging), electron-positron annihilation for PET scans, etc. Unfortunately, their acquisition is influenced by noise caused by different factors. Noise in two-dimensional images could be caused by low-light illumination, electronic defects, low-dose of radiation, and a mispositioning tool or object. Noise in three-dimensional volumes also come from a variety of sources: the limited number of views, lack of captor sensitivity, high contrasts, the reconstruction algorithms, etc. The constraint that data acquisition be noiseless is unrealistic. It is desirable to reduce, or eliminate, noise at the earliest stage in the application. However, removing noise while preserving the sharp features of an image or volume object remains a challenging task. We propose a multi-scale method to smooth 2D images and 3D tomographic data while preserving features at a specified scale. Our algorithm is controlled using a single user parameter -- the minimum scale of features to be preserved. Any variation that is smaller than the specified scale is treated as noise and smoothed, while discontinuities such as corners, edges and detail at a larger scale are preserved. We demonstrate that our smoothed data produces clean images and clean contour surfaces of volumes using standard surface-extraction algorithms. Our method is inspired by anisotropic diffusion within the volume. We compute our diffusion tensors from the local continuous histograms of gradients around each pixel in images and around each voxel in volume. Since our smoothing method works entirely on the GPU, it is extremely fast." @default.
- W93693442 created "2016-06-24" @default.
- W93693442 creator A5044227139 @default.
- W93693442 date "2012-05-24" @default.
- W93693442 modified "2023-09-27" @default.
- W93693442 title "Multi-scale Feature-Preserving Smoothing of Images and Volumes on GPU" @default.
- W93693442 cites W164384110 @default.
- W93693442 cites W1995194116 @default.
- W93693442 cites W2013031326 @default.
- W93693442 cites W2025194869 @default.
- W93693442 cites W2045901559 @default.
- W93693442 cites W2099244020 @default.
- W93693442 cites W2109863423 @default.
- W93693442 cites W2319794630 @default.
- W93693442 cites W2405290440 @default.
- W93693442 hasPublicationYear "2012" @default.
- W93693442 type Work @default.
- W93693442 sameAs 93693442 @default.
- W93693442 citedByCount "0" @default.
- W93693442 crossrefType "dissertation" @default.
- W93693442 hasAuthorship W93693442A5044227139 @default.
- W93693442 hasConcept C115961682 @default.
- W93693442 hasConcept C121332964 @default.
- W93693442 hasConcept C138885662 @default.
- W93693442 hasConcept C141379421 @default.
- W93693442 hasConcept C154945302 @default.
- W93693442 hasConcept C2776401178 @default.
- W93693442 hasConcept C2778755073 @default.
- W93693442 hasConcept C31972630 @default.
- W93693442 hasConcept C3770464 @default.
- W93693442 hasConcept C41008148 @default.
- W93693442 hasConcept C41895202 @default.
- W93693442 hasConcept C62520636 @default.
- W93693442 hasConcept C97742081 @default.
- W93693442 hasConcept C99498987 @default.
- W93693442 hasConceptScore W93693442C115961682 @default.
- W93693442 hasConceptScore W93693442C121332964 @default.
- W93693442 hasConceptScore W93693442C138885662 @default.
- W93693442 hasConceptScore W93693442C141379421 @default.
- W93693442 hasConceptScore W93693442C154945302 @default.
- W93693442 hasConceptScore W93693442C2776401178 @default.
- W93693442 hasConceptScore W93693442C2778755073 @default.
- W93693442 hasConceptScore W93693442C31972630 @default.
- W93693442 hasConceptScore W93693442C3770464 @default.
- W93693442 hasConceptScore W93693442C41008148 @default.
- W93693442 hasConceptScore W93693442C41895202 @default.
- W93693442 hasConceptScore W93693442C62520636 @default.
- W93693442 hasConceptScore W93693442C97742081 @default.
- W93693442 hasConceptScore W93693442C99498987 @default.
- W93693442 hasLocation W936934421 @default.
- W93693442 hasOpenAccess W93693442 @default.
- W93693442 hasPrimaryLocation W936934421 @default.
- W93693442 isParatext "false" @default.
- W93693442 isRetracted "false" @default.
- W93693442 magId "93693442" @default.
- W93693442 workType "dissertation" @default.