Matches in SemOpenAlex for { <https://semopenalex.org/work/W9379453> ?p ?o ?g. }
- W9379453 abstract "In today's world of vast information availability users often confront large unorganized amounts of data with limited tools for managing them. Motion imagery datasets have become increasingly popular means for exposing and disseminating information. Commonly, moving objects are of primary interest in modeling such datasets. Users may require different levels of detail mainly for visualization and further processing purposes according to the application at hand. In this thesis we exploit the geometric attributes of objects for dataset summarization by using a series of image processing and neural network tools. In order to form data summaries we select representative time instances through the segmentation of an object's spatio-temporal trajectory lines. High movement variation instances are selected through a new hybrid self-organizing map (SOM) technique to describe a single spatio-temporal trajectory. Multiple objects move in diverse yet classifiable patterns. In order to group corresponding trajectories we utilize an abstraction mechanism that investigates a vague moving relevance between the data in space and time. Thus, we introduce the spatio-temporal neighborhood unit as a variable generalization surface. By altering the unit's dimensions, scaled generalization is accomplished. Common complications in tracking applications that include occlusion, noise, information gaps and unconnected segments of data sequences are addressed through the hybrid-SOM analysis. Nevertheless, entangled data sequences where no information on which data entry belongs to each corresponding trajectory are frequently evident. A multidimensional classification technique that combines geometric and backpropagation neural network implementation is used to distinguish between trajectory data. Further more, modeling and summarization of two-dimensional phenomena evolving in time brings forward the novel concept of spatio-temporal helixes as compact event representations. The phenomena models are comprised of SOM movement nodes (spines) and cardinality shape-change descriptors (prongs). While we focus on the analysis of MI datasets, the framework can be generalized to function with other types of spatio-temporal datasets. Multiple scale generalization is allowed in a dynamic significance-based scale rather than a constant one. The constructed summaries are not just a visualization product but they support further processing for metadata creation, indexing, and querying. Experimentation, comparisons and error estimations for each technique support the analyses discussed." @default.
- W9379453 created "2016-06-24" @default.
- W9379453 creator A5041917047 @default.
- W9379453 creator A5052809986 @default.
- W9379453 date "2002-01-01" @default.
- W9379453 modified "2023-09-27" @default.
- W9379453 title "Detection and generalization of spatio-temporal trajectories for motion imagery" @default.
- W9379453 cites W137798357 @default.
- W9379453 cites W1482327797 @default.
- W9379453 cites W1486723877 @default.
- W9379453 cites W1499049447 @default.
- W9379453 cites W1518629952 @default.
- W9379453 cites W1524270492 @default.
- W9379453 cites W1552408883 @default.
- W9379453 cites W1553193704 @default.
- W9379453 cites W1679913846 @default.
- W9379453 cites W1689907099 @default.
- W9379453 cites W1771592512 @default.
- W9379453 cites W1886224142 @default.
- W9379453 cites W1972854453 @default.
- W9379453 cites W1981934656 @default.
- W9379453 cites W1982042357 @default.
- W9379453 cites W1986741427 @default.
- W9379453 cites W1987827544 @default.
- W9379453 cites W1993233092 @default.
- W9379453 cites W1995343657 @default.
- W9379453 cites W1997975608 @default.
- W9379453 cites W2008611008 @default.
- W9379453 cites W2038230692 @default.
- W9379453 cites W2074429597 @default.
- W9379453 cites W2076938548 @default.
- W9379453 cites W2077544783 @default.
- W9379453 cites W2078998373 @default.
- W9379453 cites W2085425470 @default.
- W9379453 cites W2098001825 @default.
- W9379453 cites W2098498971 @default.
- W9379453 cites W2098573015 @default.
- W9379453 cites W2099397891 @default.
- W9379453 cites W2102848861 @default.
- W9379453 cites W2104113200 @default.
- W9379453 cites W2104152838 @default.
- W9379453 cites W2106133528 @default.
- W9379453 cites W2110341331 @default.
- W9379453 cites W2110831352 @default.
- W9379453 cites W2119444142 @default.
- W9379453 cites W2128618367 @default.
- W9379453 cites W2130063129 @default.
- W9379453 cites W2131620262 @default.
- W9379453 cites W2133649345 @default.
- W9379453 cites W2134433343 @default.
- W9379453 cites W2138375496 @default.
- W9379453 cites W2138764872 @default.
- W9379453 cites W2138807980 @default.
- W9379453 cites W2142670185 @default.
- W9379453 cites W2144139464 @default.
- W9379453 cites W2151618747 @default.
- W9379453 cites W2151722709 @default.
- W9379453 cites W2158887036 @default.
- W9379453 cites W2161305861 @default.
- W9379453 cites W2163203501 @default.
- W9379453 cites W2165824050 @default.
- W9379453 cites W2165874398 @default.
- W9379453 cites W2181695980 @default.
- W9379453 cites W2294287269 @default.
- W9379453 cites W2639114357 @default.
- W9379453 cites W65460035 @default.
- W9379453 cites W65738273 @default.
- W9379453 hasPublicationYear "2002" @default.
- W9379453 type Work @default.
- W9379453 sameAs 9379453 @default.
- W9379453 citedByCount "2" @default.
- W9379453 countsByYear W93794532015 @default.
- W9379453 crossrefType "journal-article" @default.
- W9379453 hasAuthorship W9379453A5041917047 @default.
- W9379453 hasAuthorship W9379453A5052809986 @default.
- W9379453 hasConcept C104114177 @default.
- W9379453 hasConcept C111472728 @default.
- W9379453 hasConcept C121332964 @default.
- W9379453 hasConcept C124101348 @default.
- W9379453 hasConcept C124304363 @default.
- W9379453 hasConcept C1276947 @default.
- W9379453 hasConcept C134306372 @default.
- W9379453 hasConcept C13662910 @default.
- W9379453 hasConcept C138885662 @default.
- W9379453 hasConcept C153180895 @default.
- W9379453 hasConcept C154945302 @default.
- W9379453 hasConcept C170858558 @default.
- W9379453 hasConcept C177148314 @default.
- W9379453 hasConcept C2781238097 @default.
- W9379453 hasConcept C33923547 @default.
- W9379453 hasConcept C41008148 @default.
- W9379453 hasConcept C50644808 @default.
- W9379453 hasConcept C89600930 @default.
- W9379453 hasConceptScore W9379453C104114177 @default.
- W9379453 hasConceptScore W9379453C111472728 @default.
- W9379453 hasConceptScore W9379453C121332964 @default.
- W9379453 hasConceptScore W9379453C124101348 @default.
- W9379453 hasConceptScore W9379453C124304363 @default.
- W9379453 hasConceptScore W9379453C1276947 @default.
- W9379453 hasConceptScore W9379453C134306372 @default.