Matches in SemOpenAlex for { <https://semopenalex.org/work/W939601204> ?p ?o ?g. }
- W939601204 abstract "A precise value of the matrix-fracture transfer shape factor is essential for modeling fluid flow in fractured porous media by a dual-porosity approach. The slightly compressible fluid shape factor has been widely investigated in the literature. In a recent study, we have developed a transfer function for flow of a compressible fluid using a constant fracture pressure boundary condition (Ranjbar and Hassanzadeh, 2011). However, for a compressible fluid, the consequence of a pressure depletion boundary condition on the shape factor has not been investigated in the previous studies. The main purpose of this chapter is, therefore, to investigate the effect of the fracture pressure depletion regime on the shape factor for single-phase flow of a compressible fluid. In the current study, a model for evaluation of the shape factor is derived using solutions of a nonlinear diffusivity equation subject to different pressure depletion regimes. A combination of the heat integral method, the method of moments and Duhamel’s theorem is used to solve this nonlinear equation. The developed solution is validated by fine-grid numerical simulations. The presented model can recover the shape factor of slightly compressible fluids reported in the 1 This chapter is an exact copy of: Ranjbar, E. Hassanzadeh, H. Chen, Z. (2011). Effect of Fracture Pressure Depletion Regimes on the Dual-Porosity Shape Factor for Flow of Compressible Fluids in Fractured Porous Media, Advances in Water Resources, Vol. 34 (12), Page: 1681-1693. 2 The focus of our previous study (Ranjbar, E. Hassanzadeh, H. (2011), Matrix-fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media, Advances in Water Resources, 34(5), page 627-639) was to find the shape factor for the single-phase flow of compressible fluids (gases) in fractured porous media for the case of constant fracture pressure. In this study (Ranjbar and Hassanzadeh, 2011), a theoretical analysis of the constant fracture pressure shape factor for the flow of a compressible fluid in fractured porous media was presented. The presented semi-analytical solution for constant fracture pressure was validated with fine-grid numerical simulations. In this chapter we further develop our previous study to consider the effect of pressure variation in the fracture on the matrix-fracture shape factor. 3 It is worth noting that the fracture pressure in this thesis is different than the hydraulic fracture pressure and it implies the fluid pressure inside the fracture or the boundary condition imposed on the matrix block. 4 In this thesis the fracture depletion regime implies the pressure variations in the fracture which acts as a boundary condition for the matrix block. Chapter 2. Effect of fracture pressure depletion regimes on the dual-porosity ... 11 literature. This study demonstrates that in the case of a single-phase flow of compressible fluid, the shape factor is a function of the imposed boundary condition in the fracture and its variability with time. It is shown that such dependence can be described by an exponentially declining fracture pressure with different decline exponents. These findings improve our understanding of fluid flow in fractured porous media. Chapter 2. Effect of fracture pressure depletion regimes on the dual-porosity ... 12 2." @default.
- W939601204 created "2016-06-24" @default.
- W939601204 creator A5051730346 @default.
- W939601204 date "2014-01-21" @default.
- W939601204 modified "2023-09-23" @default.
- W939601204 title "Modeling of Matrix-Fracture Interaction for Conventional Fractured Gas Reservoirs" @default.
- W939601204 cites W1188032535 @default.
- W939601204 cites W137955760 @default.
- W939601204 cites W1511826912 @default.
- W939601204 cites W1525197601 @default.
- W939601204 cites W1527262490 @default.
- W939601204 cites W1538385583 @default.
- W939601204 cites W1584240939 @default.
- W939601204 cites W1589214806 @default.
- W939601204 cites W1591593323 @default.
- W939601204 cites W1603595753 @default.
- W939601204 cites W1606119439 @default.
- W939601204 cites W1609448616 @default.
- W939601204 cites W1649334690 @default.
- W939601204 cites W175005582 @default.
- W939601204 cites W1864038909 @default.
- W939601204 cites W1951993767 @default.
- W939601204 cites W1969466062 @default.
- W939601204 cites W1972563557 @default.
- W939601204 cites W1972930281 @default.
- W939601204 cites W1977491833 @default.
- W939601204 cites W1977990371 @default.
- W939601204 cites W1986702300 @default.
- W939601204 cites W1988320435 @default.
- W939601204 cites W1991783310 @default.
- W939601204 cites W1992385738 @default.
- W939601204 cites W1992895112 @default.
- W939601204 cites W1992932170 @default.
- W939601204 cites W1993792217 @default.
- W939601204 cites W1996123646 @default.
- W939601204 cites W1996950707 @default.
- W939601204 cites W2008135176 @default.
- W939601204 cites W2011956818 @default.
- W939601204 cites W2013134255 @default.
- W939601204 cites W2017048267 @default.
- W939601204 cites W2017230954 @default.
- W939601204 cites W2025026253 @default.
- W939601204 cites W2026016702 @default.
- W939601204 cites W2026388105 @default.
- W939601204 cites W2026801722 @default.
- W939601204 cites W2027852097 @default.
- W939601204 cites W2028179942 @default.
- W939601204 cites W2032019229 @default.
- W939601204 cites W2033867962 @default.
- W939601204 cites W2033991561 @default.
- W939601204 cites W2035362550 @default.
- W939601204 cites W2038180802 @default.
- W939601204 cites W2038474640 @default.
- W939601204 cites W2042072083 @default.
- W939601204 cites W2045321867 @default.
- W939601204 cites W2046070200 @default.
- W939601204 cites W2052017383 @default.
- W939601204 cites W2054005367 @default.
- W939601204 cites W2054767102 @default.
- W939601204 cites W2055154708 @default.
- W939601204 cites W2057807154 @default.
- W939601204 cites W2058815101 @default.
- W939601204 cites W2061091145 @default.
- W939601204 cites W2062684873 @default.
- W939601204 cites W2063418421 @default.
- W939601204 cites W2064128810 @default.
- W939601204 cites W2076712985 @default.
- W939601204 cites W2077994310 @default.
- W939601204 cites W2080163789 @default.
- W939601204 cites W2081341788 @default.
- W939601204 cites W2081875131 @default.
- W939601204 cites W2083880191 @default.
- W939601204 cites W2085165863 @default.
- W939601204 cites W2085775813 @default.
- W939601204 cites W2086683331 @default.
- W939601204 cites W2089548425 @default.
- W939601204 cites W2093498878 @default.
- W939601204 cites W2103922672 @default.
- W939601204 cites W2108441862 @default.
- W939601204 cites W2114553460 @default.
- W939601204 cites W2115080777 @default.
- W939601204 cites W2127605517 @default.
- W939601204 cites W2156916935 @default.
- W939601204 cites W2166910181 @default.
- W939601204 cites W2168038007 @default.
- W939601204 cites W2171835073 @default.
- W939601204 cites W2290566787 @default.
- W939601204 cites W2322955738 @default.
- W939601204 cites W2750279032 @default.
- W939601204 cites W2752932982 @default.
- W939601204 cites W3142078155 @default.
- W939601204 cites W3184518629 @default.
- W939601204 cites W73078407 @default.
- W939601204 cites W2031102999 @default.
- W939601204 cites W2043217605 @default.
- W939601204 doi "https://doi.org/10.11575/prism/26948" @default.
- W939601204 hasPublicationYear "2014" @default.
- W939601204 type Work @default.
- W939601204 sameAs 939601204 @default.
- W939601204 citedByCount "1" @default.