Matches in SemOpenAlex for { <https://semopenalex.org/work/W93981053> ?p ?o ?g. }
- W93981053 endingPage "438" @default.
- W93981053 startingPage "391" @default.
- W93981053 abstract "Compartmental models are composed of sets of interconnected mixing chambers or stirred tanks. Each component of the system is considered to be homogeneous, instantly mixed, with uniform concentration. The state variables are concentrations or molar amounts of chemical species. Chemical reactions, transmembrane transport, and binding processes, determined in reality by electrochemical driving forces and constrained by thermodynamic laws, are generally treated using first-order rate equations. This fundamental simplicity makes them easy to compute since ordinary differential equations (ODEs) are readily solved numerically and often analytically. While compartmental systems have a reputation for being merely descriptive they can be developed to levels providing realistic mechanistic features through refining the kinetics. Generally, one is considering multi-compartmental systems for realistic modeling. Compartments can be used as “black” box operators without explicit internal structure, but in pharmacokinetics compartments are considered as homogeneous pools of particular solutes, with inputs and outputs defined as flows or solute fluxes, and transformations expressed as rate equations. Descriptive models providing no explanation of mechanism are nevertheless useful in modeling of many systems. In pharmacokinetics (PK), compartmental models are in widespread use for describing the concentration–time curves of a drug concentration following administration. This gives a description of how long it remains available in the body, and is a guide to defining dosage regimens, method of delivery, and expectations for its effects. Pharmacodynamics (PD) requires more depth since it focuses on the physiological response to the drug or toxin, and therefore stimulates a demand to understand how the drug works on the biological system; having to understand drug response mechanisms then folds back on the delivery mechanism (the PK part) since PK and PD are going on simultaneously (PKPD). Many systems have been developed over the years to aid in modeling PKPD systems. Almost all have solved only ODEs, while allowing considerable conceptual complexity in the descriptions of chemical transformations, methods of solving the equations, displaying results, and analyzing systems behavior. Systems for compartmental analysis include Simulation and Applied Mathematics, CoPasi (enzymatic reactions), Berkeley Madonna (physiological systems), XPPaut (dynamical system behavioral analysis), and a good many others. JSim, a system allowing the use of both ODEs and partial differential equations (that describe spatial distributions), is used here. It is an open source system, meaning that it is available for free and can be modified by users. It offers a set of features unique in breadth of capability that make model verification surer and easier, and produces models that can be shared on all standard computer platforms." @default.
- W93981053 created "2016-06-24" @default.
- W93981053 creator A5043595014 @default.
- W93981053 creator A5062325761 @default.
- W93981053 creator A5075392246 @default.
- W93981053 creator A5090544172 @default.
- W93981053 date "2012-01-01" @default.
- W93981053 modified "2023-10-15" @default.
- W93981053 title "Compartmental Modeling in the Analysis of Biological Systems" @default.
- W93981053 cites W1505874986 @default.
- W93981053 cites W1516768269 @default.
- W93981053 cites W189627547 @default.
- W93981053 cites W1973459352 @default.
- W93981053 cites W1975035521 @default.
- W93981053 cites W1981827114 @default.
- W93981053 cites W1983479139 @default.
- W93981053 cites W1986798034 @default.
- W93981053 cites W2014781793 @default.
- W93981053 cites W2016789374 @default.
- W93981053 cites W2017727903 @default.
- W93981053 cites W2034239818 @default.
- W93981053 cites W2036669959 @default.
- W93981053 cites W2043011124 @default.
- W93981053 cites W2051834931 @default.
- W93981053 cites W2054237953 @default.
- W93981053 cites W2076803829 @default.
- W93981053 cites W2090371024 @default.
- W93981053 cites W2107904958 @default.
- W93981053 cites W2109393326 @default.
- W93981053 cites W2115293321 @default.
- W93981053 cites W2119906179 @default.
- W93981053 cites W2120271827 @default.
- W93981053 cites W2122485640 @default.
- W93981053 cites W2127564716 @default.
- W93981053 cites W2129299701 @default.
- W93981053 cites W2129364596 @default.
- W93981053 cites W2135638733 @default.
- W93981053 cites W2146635647 @default.
- W93981053 cites W2157281548 @default.
- W93981053 cites W2171263166 @default.
- W93981053 cites W2246057379 @default.
- W93981053 cites W2311114204 @default.
- W93981053 cites W2411572505 @default.
- W93981053 cites W2411910571 @default.
- W93981053 cites W2412477259 @default.
- W93981053 cites W2465745915 @default.
- W93981053 cites W2587073892 @default.
- W93981053 doi "https://doi.org/10.1007/978-1-62703-050-2_17" @default.
- W93981053 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23007439" @default.
- W93981053 hasPublicationYear "2012" @default.
- W93981053 type Work @default.
- W93981053 sameAs 93981053 @default.
- W93981053 citedByCount "14" @default.
- W93981053 countsByYear W939810532014 @default.
- W93981053 countsByYear W939810532015 @default.
- W93981053 countsByYear W939810532016 @default.
- W93981053 countsByYear W939810532017 @default.
- W93981053 countsByYear W939810532019 @default.
- W93981053 countsByYear W939810532020 @default.
- W93981053 countsByYear W939810532022 @default.
- W93981053 countsByYear W939810532023 @default.
- W93981053 crossrefType "book-chapter" @default.
- W93981053 hasAuthorship W93981053A5043595014 @default.
- W93981053 hasAuthorship W93981053A5062325761 @default.
- W93981053 hasAuthorship W93981053A5075392246 @default.
- W93981053 hasAuthorship W93981053A5090544172 @default.
- W93981053 hasConcept C121332964 @default.
- W93981053 hasConcept C121864883 @default.
- W93981053 hasConcept C127413603 @default.
- W93981053 hasConcept C134306372 @default.
- W93981053 hasConcept C183696295 @default.
- W93981053 hasConcept C185592680 @default.
- W93981053 hasConcept C186060115 @default.
- W93981053 hasConcept C28826006 @default.
- W93981053 hasConcept C33923547 @default.
- W93981053 hasConcept C34862557 @default.
- W93981053 hasConcept C41008148 @default.
- W93981053 hasConcept C51544822 @default.
- W93981053 hasConcept C66882249 @default.
- W93981053 hasConcept C78045399 @default.
- W93981053 hasConcept C86803240 @default.
- W93981053 hasConceptScore W93981053C121332964 @default.
- W93981053 hasConceptScore W93981053C121864883 @default.
- W93981053 hasConceptScore W93981053C127413603 @default.
- W93981053 hasConceptScore W93981053C134306372 @default.
- W93981053 hasConceptScore W93981053C183696295 @default.
- W93981053 hasConceptScore W93981053C185592680 @default.
- W93981053 hasConceptScore W93981053C186060115 @default.
- W93981053 hasConceptScore W93981053C28826006 @default.
- W93981053 hasConceptScore W93981053C33923547 @default.
- W93981053 hasConceptScore W93981053C34862557 @default.
- W93981053 hasConceptScore W93981053C41008148 @default.
- W93981053 hasConceptScore W93981053C51544822 @default.
- W93981053 hasConceptScore W93981053C66882249 @default.
- W93981053 hasConceptScore W93981053C78045399 @default.
- W93981053 hasConceptScore W93981053C86803240 @default.
- W93981053 hasLocation W939810531 @default.
- W93981053 hasLocation W939810532 @default.