Matches in SemOpenAlex for { <https://semopenalex.org/work/W940364306> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W940364306 abstract "Nowadays Artificial Intelegence (AI) has developed for many bridge deterioration model. The learning ability of AI promising reliable result in forecasting and modelling even in the existence of non-linear complex relationship. Furthermore, user friendly AI tools provided by today’s software makes AI methods more attractive. In this study one of Ai method, Artificial Neural Network (ANN) are used to develop models to predict bridge ratting factor using current geometry, age, traffic load, and structural attributes as variables. Data is acquired from site investigation and structural modelling that has implemented before. ANN model provided reliable result in bridge ratting factor deterioration using Indonesian bridge data." @default.
- W940364306 created "2016-06-24" @default.
- W940364306 creator A5017339519 @default.
- W940364306 creator A5025508066 @default.
- W940364306 creator A5072640081 @default.
- W940364306 date "2014-02-12" @default.
- W940364306 modified "2023-09-23" @default.
- W940364306 title "Prediksi Rating Factor Jembatan Komposit dengan Dua Variabel Kerusakan Menggunakan Artificial Neural Network" @default.
- W940364306 hasPublicationYear "2014" @default.
- W940364306 type Work @default.
- W940364306 sameAs 940364306 @default.
- W940364306 citedByCount "0" @default.
- W940364306 crossrefType "journal-article" @default.
- W940364306 hasAuthorship W940364306A5017339519 @default.
- W940364306 hasAuthorship W940364306A5025508066 @default.
- W940364306 hasAuthorship W940364306A5072640081 @default.
- W940364306 hasConcept C100776233 @default.
- W940364306 hasConcept C119857082 @default.
- W940364306 hasConcept C124101348 @default.
- W940364306 hasConcept C126322002 @default.
- W940364306 hasConcept C127413603 @default.
- W940364306 hasConcept C154945302 @default.
- W940364306 hasConcept C199360897 @default.
- W940364306 hasConcept C2777904410 @default.
- W940364306 hasConcept C41008148 @default.
- W940364306 hasConcept C50644808 @default.
- W940364306 hasConcept C71924100 @default.
- W940364306 hasConceptScore W940364306C100776233 @default.
- W940364306 hasConceptScore W940364306C119857082 @default.
- W940364306 hasConceptScore W940364306C124101348 @default.
- W940364306 hasConceptScore W940364306C126322002 @default.
- W940364306 hasConceptScore W940364306C127413603 @default.
- W940364306 hasConceptScore W940364306C154945302 @default.
- W940364306 hasConceptScore W940364306C199360897 @default.
- W940364306 hasConceptScore W940364306C2777904410 @default.
- W940364306 hasConceptScore W940364306C41008148 @default.
- W940364306 hasConceptScore W940364306C50644808 @default.
- W940364306 hasConceptScore W940364306C71924100 @default.
- W940364306 hasLocation W9403643061 @default.
- W940364306 hasOpenAccess W940364306 @default.
- W940364306 hasPrimaryLocation W9403643061 @default.
- W940364306 isParatext "false" @default.
- W940364306 isRetracted "false" @default.
- W940364306 magId "940364306" @default.
- W940364306 workType "article" @default.