Matches in SemOpenAlex for { <https://semopenalex.org/work/W944333893> ?p ?o ?g. }
- W944333893 endingPage "4986" @default.
- W944333893 startingPage "4974" @default.
- W944333893 abstract "MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence.Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spread functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2(∗) images (1/T2(∗)) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2(∗), were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison.The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (-22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT.The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation." @default.
- W944333893 created "2016-06-24" @default.
- W944333893 creator A5012255913 @default.
- W944333893 creator A5018829722 @default.
- W944333893 creator A5019788988 @default.
- W944333893 creator A5026445761 @default.
- W944333893 creator A5047792556 @default.
- W944333893 creator A5050533431 @default.
- W944333893 creator A5054069282 @default.
- W944333893 creator A5058532911 @default.
- W944333893 creator A5062083818 @default.
- W944333893 creator A5072224075 @default.
- W944333893 creator A5075171975 @default.
- W944333893 creator A5079729494 @default.
- W944333893 date "2015-07-31" @default.
- W944333893 modified "2023-10-08" @default.
- W944333893 title "Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering" @default.
- W944333893 cites W1578517125 @default.
- W944333893 cites W1594118958 @default.
- W944333893 cites W1777171562 @default.
- W944333893 cites W1965348610 @default.
- W944333893 cites W1966619899 @default.
- W944333893 cites W1969993716 @default.
- W944333893 cites W1971098086 @default.
- W944333893 cites W1980076601 @default.
- W944333893 cites W1982095138 @default.
- W944333893 cites W1984473052 @default.
- W944333893 cites W1984908845 @default.
- W944333893 cites W2001950075 @default.
- W944333893 cites W2003059727 @default.
- W944333893 cites W2003933915 @default.
- W944333893 cites W2006162458 @default.
- W944333893 cites W2010471759 @default.
- W944333893 cites W2015134308 @default.
- W944333893 cites W2016451441 @default.
- W944333893 cites W2019171399 @default.
- W944333893 cites W2020195866 @default.
- W944333893 cites W2021947696 @default.
- W944333893 cites W2031958836 @default.
- W944333893 cites W2033345149 @default.
- W944333893 cites W2035397698 @default.
- W944333893 cites W2037425560 @default.
- W944333893 cites W2043626403 @default.
- W944333893 cites W2043850803 @default.
- W944333893 cites W2044967973 @default.
- W944333893 cites W2045415729 @default.
- W944333893 cites W2047690090 @default.
- W944333893 cites W2053677366 @default.
- W944333893 cites W2056319163 @default.
- W944333893 cites W2066798477 @default.
- W944333893 cites W2070935120 @default.
- W944333893 cites W2079070412 @default.
- W944333893 cites W2080056320 @default.
- W944333893 cites W2080858163 @default.
- W944333893 cites W2084851806 @default.
- W944333893 cites W2086284908 @default.
- W944333893 cites W2087726204 @default.
- W944333893 cites W2112276316 @default.
- W944333893 cites W2117337704 @default.
- W944333893 cites W2118758783 @default.
- W944333893 cites W2121757466 @default.
- W944333893 cites W2129292902 @default.
- W944333893 cites W2130272160 @default.
- W944333893 cites W2137781005 @default.
- W944333893 cites W2142082007 @default.
- W944333893 cites W2152242891 @default.
- W944333893 cites W2154346707 @default.
- W944333893 cites W2166080233 @default.
- W944333893 cites W2167157872 @default.
- W944333893 cites W2171053825 @default.
- W944333893 cites W2463848034 @default.
- W944333893 cites W4239495886 @default.
- W944333893 doi "https://doi.org/10.1118/1.4926756" @default.
- W944333893 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5148184" @default.
- W944333893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26233223" @default.
- W944333893 hasPublicationYear "2015" @default.
- W944333893 type Work @default.
- W944333893 sameAs 944333893 @default.
- W944333893 citedByCount "52" @default.
- W944333893 countsByYear W9443338932016 @default.
- W944333893 countsByYear W9443338932017 @default.
- W944333893 countsByYear W9443338932018 @default.
- W944333893 countsByYear W9443338932019 @default.
- W944333893 countsByYear W9443338932020 @default.
- W944333893 countsByYear W9443338932021 @default.
- W944333893 countsByYear W9443338932022 @default.
- W944333893 countsByYear W9443338932023 @default.
- W944333893 crossrefType "journal-article" @default.
- W944333893 hasAuthorship W944333893A5012255913 @default.
- W944333893 hasAuthorship W944333893A5018829722 @default.
- W944333893 hasAuthorship W944333893A5019788988 @default.
- W944333893 hasAuthorship W944333893A5026445761 @default.
- W944333893 hasAuthorship W944333893A5047792556 @default.
- W944333893 hasAuthorship W944333893A5050533431 @default.
- W944333893 hasAuthorship W944333893A5054069282 @default.
- W944333893 hasAuthorship W944333893A5058532911 @default.
- W944333893 hasAuthorship W944333893A5062083818 @default.
- W944333893 hasAuthorship W944333893A5072224075 @default.