Matches in SemOpenAlex for { <https://semopenalex.org/work/W95285841> ?p ?o ?g. }
- W95285841 abstract "Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software.SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems.Therefore, evolutionary algorithms are adopted as the main technique in solving these problems.The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms.In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems.The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan.This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance." @default.
- W95285841 created "2016-06-24" @default.
- W95285841 creator A5007903679 @default.
- W95285841 creator A5011599882 @default.
- W95285841 date "2013-01-01" @default.
- W95285841 modified "2023-09-24" @default.
- W95285841 title "Composite SaaS resource management in cloud computing using evolutionary computation" @default.
- W95285841 cites W104820061 @default.
- W95285841 cites W127457661 @default.
- W95285841 cites W1497256448 @default.
- W95285841 cites W1513424136 @default.
- W95285841 cites W1517021811 @default.
- W95285841 cites W1526455201 @default.
- W95285841 cites W1527264199 @default.
- W95285841 cites W1536754783 @default.
- W95285841 cites W1550018288 @default.
- W95285841 cites W1550474463 @default.
- W95285841 cites W1555689267 @default.
- W95285841 cites W1558127485 @default.
- W95285841 cites W1580772087 @default.
- W95285841 cites W1587334086 @default.
- W95285841 cites W1601735911 @default.
- W95285841 cites W1604236918 @default.
- W95285841 cites W167229773 @default.
- W95285841 cites W1745477558 @default.
- W95285841 cites W1805994660 @default.
- W95285841 cites W1966874858 @default.
- W95285841 cites W1968608569 @default.
- W95285841 cites W1972004776 @default.
- W95285841 cites W1974117084 @default.
- W95285841 cites W1977367431 @default.
- W95285841 cites W1984012539 @default.
- W95285841 cites W1984886537 @default.
- W95285841 cites W1985334587 @default.
- W95285841 cites W1997269120 @default.
- W95285841 cites W2003024453 @default.
- W95285841 cites W2010444881 @default.
- W95285841 cites W2010764766 @default.
- W95285841 cites W2011046815 @default.
- W95285841 cites W2013067314 @default.
- W95285841 cites W2013479318 @default.
- W95285841 cites W2016830470 @default.
- W95285841 cites W2019110836 @default.
- W95285841 cites W2025397485 @default.
- W95285841 cites W2025896589 @default.
- W95285841 cites W2035128439 @default.
- W95285841 cites W2042594698 @default.
- W95285841 cites W2053855431 @default.
- W95285841 cites W2055627578 @default.
- W95285841 cites W2060425749 @default.
- W95285841 cites W2073524532 @default.
- W95285841 cites W2076492944 @default.
- W95285841 cites W2079967994 @default.
- W95285841 cites W2080222368 @default.
- W95285841 cites W2082231371 @default.
- W95285841 cites W2085410041 @default.
- W95285841 cites W2088454976 @default.
- W95285841 cites W2088961263 @default.
- W95285841 cites W2093505886 @default.
- W95285841 cites W2094034456 @default.
- W95285841 cites W2094504503 @default.
- W95285841 cites W2097571405 @default.
- W95285841 cites W2100211715 @default.
- W95285841 cites W2101827108 @default.
- W95285841 cites W2101938656 @default.
- W95285841 cites W2101992934 @default.
- W95285841 cites W2103981148 @default.
- W95285841 cites W2104324382 @default.
- W95285841 cites W2105265308 @default.
- W95285841 cites W2105797904 @default.
- W95285841 cites W2108023917 @default.
- W95285841 cites W2108060598 @default.
- W95285841 cites W2113960682 @default.
- W95285841 cites W2117564498 @default.
- W95285841 cites W2120876973 @default.
- W95285841 cites W2121282153 @default.
- W95285841 cites W2121365620 @default.
- W95285841 cites W2121429049 @default.
- W95285841 cites W2123408066 @default.
- W95285841 cites W2123541516 @default.
- W95285841 cites W2124600593 @default.
- W95285841 cites W2126616379 @default.
- W95285841 cites W2131202906 @default.
- W95285841 cites W2131726714 @default.
- W95285841 cites W2134522095 @default.
- W95285841 cites W2139953704 @default.
- W95285841 cites W2142994777 @default.
- W95285841 cites W2144568399 @default.
- W95285841 cites W2144809281 @default.
- W95285841 cites W2145457647 @default.
- W95285841 cites W2150035198 @default.
- W95285841 cites W2152798363 @default.
- W95285841 cites W2153996477 @default.
- W95285841 cites W2154158105 @default.
- W95285841 cites W2157687953 @default.
- W95285841 cites W2159207159 @default.
- W95285841 cites W2159484386 @default.
- W95285841 cites W2160534125 @default.
- W95285841 cites W2160756722 @default.
- W95285841 cites W2160885694 @default.