Matches in SemOpenAlex for { <https://semopenalex.org/work/W953661097> ?p ?o ?g. }
- W953661097 abstract "In many complex systems the non-linear cooperative dynamics determine the emergence of self-organized, metastable, structures that are associated with a birth–death process of cooperation. This is found to be described by a renewal point process, i.e., a sequence of crucial birth–death events corresponding to transitions among states that are faster than the typical long-life time of the metastable states. Metastable states are highly correlated, but the occurrence of crucial events is typically associated with a fast memory drop, which is the reason for the renewal condition. Consequently, these complex systems display a power-law decay and, thus, a long-range or scale-free behavior, in both time correlations and distribution of inter-event times, i.e., fractal intermittency.The emergence of fractal intermittency is then a signature of complexity. However, the scaling features of complex systems are, in general, affected by the presence of added white or short-term noise. This has been found also for fractal intermittency.In this work, after a brief review on metastability and noise in complex systems, we discuss the emerging paradigm of Temporal Complexity. Then, we propose a model of noisy fractal intermittency, where noise is interpreted as a renewal Poisson process with event rate rp. We show that the presence of Poisson noise causes the emergence of a normal diffusion scaling in the long-time range of diffusion generated by a telegraph signal driven by noisy fractal intermittency. We analytically derive the scaling law of the long-time normal diffusivity coefficient. We find the surprising result that this long-time normal diffusivity depends not only on the Poisson event rate, but also on the parameters of the complex component of the signal: the power exponent μ of the inter-event time distribution, denoted as complexity index, and the time scale T needed to reach the asymptotic power-law behavior marking the emergence of complexity. In particular, in the range μ < 3, we find the counter-intuitive result that normal diffusivity increases as the Poisson rate decreases.Starting from the diffusivity scaling law here derived, we propose a novel scaling analysis of complex signals being able to estimate both the complexity index μ and the Poisson noise rate rp." @default.
- W953661097 created "2016-06-24" @default.
- W953661097 creator A5001429017 @default.
- W953661097 creator A5088306376 @default.
- W953661097 date "2015-12-01" @default.
- W953661097 modified "2023-09-24" @default.
- W953661097 title "Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency" @default.
- W953661097 cites W1469387464 @default.
- W953661097 cites W1495630773 @default.
- W953661097 cites W1545829026 @default.
- W953661097 cites W1557758852 @default.
- W953661097 cites W1600864952 @default.
- W953661097 cites W1617755476 @default.
- W953661097 cites W162050314 @default.
- W953661097 cites W1703275993 @default.
- W953661097 cites W1964698237 @default.
- W953661097 cites W1970473250 @default.
- W953661097 cites W1971283401 @default.
- W953661097 cites W1976542443 @default.
- W953661097 cites W1978956672 @default.
- W953661097 cites W1981559388 @default.
- W953661097 cites W1984880537 @default.
- W953661097 cites W1985319596 @default.
- W953661097 cites W1985366708 @default.
- W953661097 cites W1985758640 @default.
- W953661097 cites W1987081251 @default.
- W953661097 cites W1989994190 @default.
- W953661097 cites W1992761472 @default.
- W953661097 cites W1997136522 @default.
- W953661097 cites W1998466129 @default.
- W953661097 cites W2003060457 @default.
- W953661097 cites W2011095647 @default.
- W953661097 cites W2011109242 @default.
- W953661097 cites W2016533177 @default.
- W953661097 cites W2017821362 @default.
- W953661097 cites W2018436381 @default.
- W953661097 cites W2019321442 @default.
- W953661097 cites W2024611213 @default.
- W953661097 cites W2028381454 @default.
- W953661097 cites W2032325839 @default.
- W953661097 cites W2035346010 @default.
- W953661097 cites W2035461931 @default.
- W953661097 cites W2046063158 @default.
- W953661097 cites W2048954277 @default.
- W953661097 cites W2049891146 @default.
- W953661097 cites W2051581994 @default.
- W953661097 cites W2051882320 @default.
- W953661097 cites W2052591361 @default.
- W953661097 cites W2053130899 @default.
- W953661097 cites W2053366949 @default.
- W953661097 cites W2053888902 @default.
- W953661097 cites W2055766378 @default.
- W953661097 cites W2058402549 @default.
- W953661097 cites W2059512699 @default.
- W953661097 cites W2065033522 @default.
- W953661097 cites W2067349442 @default.
- W953661097 cites W2067358463 @default.
- W953661097 cites W2069374615 @default.
- W953661097 cites W2081675070 @default.
- W953661097 cites W2082219043 @default.
- W953661097 cites W2090496237 @default.
- W953661097 cites W2091464855 @default.
- W953661097 cites W2100509843 @default.
- W953661097 cites W2102785651 @default.
- W953661097 cites W2116017029 @default.
- W953661097 cites W2122328014 @default.
- W953661097 cites W2122694742 @default.
- W953661097 cites W2122803078 @default.
- W953661097 cites W2127964532 @default.
- W953661097 cites W2128254052 @default.
- W953661097 cites W2136483817 @default.
- W953661097 cites W2140531572 @default.
- W953661097 cites W2146527472 @default.
- W953661097 cites W2149439843 @default.
- W953661097 cites W2153035821 @default.
- W953661097 cites W2155176960 @default.
- W953661097 cites W2220748764 @default.
- W953661097 cites W2751862591 @default.
- W953661097 cites W2962905694 @default.
- W953661097 cites W2964039124 @default.
- W953661097 cites W3124431080 @default.
- W953661097 cites W1964199486 @default.
- W953661097 doi "https://doi.org/10.1016/j.chaos.2015.07.003" @default.
- W953661097 hasPublicationYear "2015" @default.
- W953661097 type Work @default.
- W953661097 sameAs 953661097 @default.
- W953661097 citedByCount "7" @default.
- W953661097 countsByYear W9536610972015 @default.
- W953661097 countsByYear W9536610972016 @default.
- W953661097 countsByYear W9536610972017 @default.
- W953661097 countsByYear W9536610972018 @default.
- W953661097 countsByYear W9536610972019 @default.
- W953661097 countsByYear W9536610972020 @default.
- W953661097 crossrefType "journal-article" @default.
- W953661097 hasAuthorship W953661097A5001429017 @default.
- W953661097 hasAuthorship W953661097A5088306376 @default.
- W953661097 hasBestOaLocation W9536610972 @default.
- W953661097 hasConcept C105795698 @default.
- W953661097 hasConcept C110507122 @default.
- W953661097 hasConcept C115961682 @default.