Matches in SemOpenAlex for { <https://semopenalex.org/work/W9610824> ?p ?o ?g. }
- W9610824 abstract "Today, digital data is accumulated at a faster than ever speed in science, engineering, biomedicine, and real-world sensing. Data mining provides us an effective way for the exploration and analysis of hidden patterns from these data for a broad spectrum of applications. Usually, these datasets share one prominent characteristic: tremendous in size with tens of thousands of objects and features. In addition, data is not only collected over a period of time, but the relationship between data points can change over that period too. Besides, knowledge is very sparsely encoded because the patterns are usually active only in a local area. The ubiquitous phenomenon of massive, dynamic, and sparse data imposes considerable challenges in data mining research. Recently, techniques that can expand the human ability to comprehend large-scale data have attracted significant attention in the research community. In this dissertation, we present approaches to solve the problems of complex data analysis in various applications. Specifically, we have achieved the following: 1) we develop Exemplar-based low-rank sparse Matrix Decomposition (EMD), a novel method for fast clustering large-scale data by incorporating low-rank approximations into matrix decomposition-based clustering; 2) we propose ECKF, a general model for large-scale Evolutionary Clustering based on low-rank Kernel matrix Factorization; by monitoring the low-rank approximation errors at every time step, ECKF can analyze if the underlying structure of the data or the nature of the relationship between the data points has changed over different time steps; based on this, a decision to either succeed the previous clustering or perform a new clustering is made; 3) we propose a Multi-level Low-rank Approximation (MLA) framework for fast spectral clustering, which is empirically shown to cluster large-scale data very efficiently; 4) we extend the MLA framework with a non-linear kernel and apply it to HD image segmentation; with sufficient data samples selected by fast sampling strategy, our method shows superior performance compared with other leading approximate spectral clusterings; 5) we develop a fast algorithm to detect abnormal crowd behavior in surveillance videos by employing low-rank matrix approximations to model crowd behavior patterns; through experiments performed on simulation crowd videos, we demonstrate the effectiveness of our method." @default.
- W9610824 created "2016-06-24" @default.
- W9610824 creator A5000815865 @default.
- W9610824 creator A5072879756 @default.
- W9610824 date "2012-01-01" @default.
- W9610824 modified "2023-09-27" @default.
- W9610824 title "Complex data analytics via sparse, low-rank matrix approximation" @default.
- W9610824 cites W1492327544 @default.
- W9610824 cites W1508960934 @default.
- W9610824 cites W1520100043 @default.
- W9610824 cites W1564611420 @default.
- W9610824 cites W1568377519 @default.
- W9610824 cites W1578099820 @default.
- W9610824 cites W1587744656 @default.
- W9610824 cites W1592090825 @default.
- W9610824 cites W1766432634 @default.
- W9610824 cites W1880262756 @default.
- W9610824 cites W1902027874 @default.
- W9610824 cites W1970950689 @default.
- W9610824 cites W1971272745 @default.
- W9610824 cites W1972544340 @default.
- W9610824 cites W1981745143 @default.
- W9610824 cites W1989938746 @default.
- W9610824 cites W1990044052 @default.
- W9610824 cites W1992419399 @default.
- W9610824 cites W2003690406 @default.
- W9610824 cites W2004791924 @default.
- W9610824 cites W2011039300 @default.
- W9610824 cites W2013029404 @default.
- W9610824 cites W2017288758 @default.
- W9610824 cites W2037563221 @default.
- W9610824 cites W2042465463 @default.
- W9610824 cites W2043545458 @default.
- W9610824 cites W2049633694 @default.
- W9610824 cites W2058486241 @default.
- W9610824 cites W2069429561 @default.
- W9610824 cites W2070670538 @default.
- W9610824 cites W2077442640 @default.
- W9610824 cites W2085927826 @default.
- W9610824 cites W2089484716 @default.
- W9610824 cites W2091845730 @default.
- W9610824 cites W2094665250 @default.
- W9610824 cites W2095897464 @default.
- W9610824 cites W2097645701 @default.
- W9610824 cites W2099195694 @default.
- W9610824 cites W2099206369 @default.
- W9610824 cites W2102098892 @default.
- W9610824 cites W2107610218 @default.
- W9610824 cites W2107940287 @default.
- W9610824 cites W2109464129 @default.
- W9610824 cites W2110158442 @default.
- W9610824 cites W2110374137 @default.
- W9610824 cites W2110727491 @default.
- W9610824 cites W2112545207 @default.
- W9610824 cites W2112912067 @default.
- W9610824 cites W2113065518 @default.
- W9610824 cites W2116810533 @default.
- W9610824 cites W2118718620 @default.
- W9610824 cites W2119571791 @default.
- W9610824 cites W2121828058 @default.
- W9610824 cites W2121927366 @default.
- W9610824 cites W2121947440 @default.
- W9610824 cites W2124890708 @default.
- W9610824 cites W2124931816 @default.
- W9610824 cites W2125105611 @default.
- W9610824 cites W2125531986 @default.
- W9610824 cites W2127218421 @default.
- W9610824 cites W2131550388 @default.
- W9610824 cites W2131807809 @default.
- W9610824 cites W2132582398 @default.
- W9610824 cites W2134737843 @default.
- W9610824 cites W2141465109 @default.
- W9610824 cites W2143185028 @default.
- W9610824 cites W2143646243 @default.
- W9610824 cites W2156374565 @default.
- W9610824 cites W2158266063 @default.
- W9610824 cites W2165346010 @default.
- W9610824 cites W2165685007 @default.
- W9610824 cites W2165874743 @default.
- W9610824 cites W2166802655 @default.
- W9610824 cites W2166981435 @default.
- W9610824 cites W2168103112 @default.
- W9610824 cites W2168175751 @default.
- W9610824 cites W2170337404 @default.
- W9610824 cites W2171343266 @default.
- W9610824 cites W2293546752 @default.
- W9610824 cites W2432978112 @default.
- W9610824 cites W2494779131 @default.
- W9610824 cites W2498816513 @default.
- W9610824 cites W2571268788 @default.
- W9610824 cites W258053484 @default.
- W9610824 cites W2999729612 @default.
- W9610824 cites W3024170076 @default.
- W9610824 cites W3099514962 @default.
- W9610824 cites W3134067276 @default.
- W9610824 cites W3143596294 @default.
- W9610824 cites W370143576 @default.
- W9610824 cites W131606692 @default.
- W9610824 hasPublicationYear "2012" @default.
- W9610824 type Work @default.