Matches in SemOpenAlex for { <https://semopenalex.org/work/W965432404> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W965432404 abstract "In this paper we argue that the explicit account of uncertainty in data modeling is particularly important for biomedical applications of neural networks and related techniques. There are several sources of uncertainty of a model, including noise, bias and variance. Unless one attempts to identify or minimize the sources that contribute to errors of a particular application, one only has a sub-optimal solution. If, on the other hand, one does attempt to model uncertainty, one gets several major advantages. We discuss several methods for modeling uncertainty, including density estimation, Bayesian inference and complex noise models, in the context of several sample applications — most notably in the domain of biosignal processing." @default.
- W965432404 created "2016-06-24" @default.
- W965432404 creator A5048093482 @default.
- W965432404 creator A5050506609 @default.
- W965432404 creator A5089210888 @default.
- W965432404 date "2000-01-01" @default.
- W965432404 modified "2023-09-23" @default.
- W965432404 title "Modelling Uncertainty in Biomedical Applications of Neural Networks" @default.
- W965432404 cites W1487062714 @default.
- W965432404 cites W1567512734 @default.
- W965432404 cites W2090217212 @default.
- W965432404 cites W2108384452 @default.
- W965432404 cites W2144583725 @default.
- W965432404 cites W2156909104 @default.
- W965432404 doi "https://doi.org/10.1007/978-1-4471-0513-8_3" @default.
- W965432404 hasPublicationYear "2000" @default.
- W965432404 type Work @default.
- W965432404 sameAs 965432404 @default.
- W965432404 citedByCount "1" @default.
- W965432404 crossrefType "book-chapter" @default.
- W965432404 hasAuthorship W965432404A5048093482 @default.
- W965432404 hasAuthorship W965432404A5050506609 @default.
- W965432404 hasAuthorship W965432404A5089210888 @default.
- W965432404 hasConcept C107673813 @default.
- W965432404 hasConcept C115961682 @default.
- W965432404 hasConcept C119857082 @default.
- W965432404 hasConcept C121955636 @default.
- W965432404 hasConcept C124101348 @default.
- W965432404 hasConcept C144133560 @default.
- W965432404 hasConcept C151730666 @default.
- W965432404 hasConcept C154945302 @default.
- W965432404 hasConcept C196083921 @default.
- W965432404 hasConcept C2776214188 @default.
- W965432404 hasConcept C2779343474 @default.
- W965432404 hasConcept C32230216 @default.
- W965432404 hasConcept C41008148 @default.
- W965432404 hasConcept C50644808 @default.
- W965432404 hasConcept C86803240 @default.
- W965432404 hasConcept C99498987 @default.
- W965432404 hasConceptScore W965432404C107673813 @default.
- W965432404 hasConceptScore W965432404C115961682 @default.
- W965432404 hasConceptScore W965432404C119857082 @default.
- W965432404 hasConceptScore W965432404C121955636 @default.
- W965432404 hasConceptScore W965432404C124101348 @default.
- W965432404 hasConceptScore W965432404C144133560 @default.
- W965432404 hasConceptScore W965432404C151730666 @default.
- W965432404 hasConceptScore W965432404C154945302 @default.
- W965432404 hasConceptScore W965432404C196083921 @default.
- W965432404 hasConceptScore W965432404C2776214188 @default.
- W965432404 hasConceptScore W965432404C2779343474 @default.
- W965432404 hasConceptScore W965432404C32230216 @default.
- W965432404 hasConceptScore W965432404C41008148 @default.
- W965432404 hasConceptScore W965432404C50644808 @default.
- W965432404 hasConceptScore W965432404C86803240 @default.
- W965432404 hasConceptScore W965432404C99498987 @default.
- W965432404 hasLocation W9654324041 @default.
- W965432404 hasOpenAccess W965432404 @default.
- W965432404 hasPrimaryLocation W9654324041 @default.
- W965432404 hasRelatedWork W1506173723 @default.
- W965432404 hasRelatedWork W152970461 @default.
- W965432404 hasRelatedWork W2017233393 @default.
- W965432404 hasRelatedWork W2032027875 @default.
- W965432404 hasRelatedWork W2149858466 @default.
- W965432404 hasRelatedWork W2757105582 @default.
- W965432404 hasRelatedWork W2902480041 @default.
- W965432404 hasRelatedWork W2922968883 @default.
- W965432404 hasRelatedWork W2959258437 @default.
- W965432404 hasRelatedWork W2980630789 @default.
- W965432404 hasRelatedWork W3014531891 @default.
- W965432404 hasRelatedWork W3021881484 @default.
- W965432404 hasRelatedWork W3045971936 @default.
- W965432404 hasRelatedWork W3099111334 @default.
- W965432404 hasRelatedWork W3099151881 @default.
- W965432404 hasRelatedWork W3102961490 @default.
- W965432404 hasRelatedWork W3115782399 @default.
- W965432404 hasRelatedWork W3169399549 @default.
- W965432404 hasRelatedWork W3177259518 @default.
- W965432404 hasRelatedWork W1592057109 @default.
- W965432404 isParatext "false" @default.
- W965432404 isRetracted "false" @default.
- W965432404 magId "965432404" @default.
- W965432404 workType "book-chapter" @default.