Matches in SemOpenAlex for { <https://semopenalex.org/work/W9657784> ?p ?o ?g. }
- W9657784 endingPage "402" @default.
- W9657784 startingPage "387" @default.
- W9657784 abstract "In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks. Following a recently proposed framework for security evaluation, we simulate attack scenarios that exhibit different risk levels for the classifier by increasing the attacker's knowledge of the system and her ability to manipulate attack samples. This gives the classifier designer a better picture of the classifier performance under evasion attacks, and allows him to perform a more informed model selection (or parameter setting). We evaluate our approach on the relevant security task of malware detection in PDF files, and show that such systems can be easily evaded. We also sketch some countermeasures suggested by our analysis." @default.
- W9657784 created "2016-06-24" @default.
- W9657784 creator A5007121882 @default.
- W9657784 creator A5008367647 @default.
- W9657784 creator A5032367579 @default.
- W9657784 creator A5051452548 @default.
- W9657784 creator A5060874303 @default.
- W9657784 creator A5065359946 @default.
- W9657784 creator A5075367917 @default.
- W9657784 creator A5089735573 @default.
- W9657784 date "2013-01-01" @default.
- W9657784 modified "2023-10-15" @default.
- W9657784 title "Evasion Attacks against Machine Learning at Test Time" @default.
- W9657784 cites W1519407765 @default.
- W9657784 cites W1966912382 @default.
- W9657784 cites W2010967033 @default.
- W9657784 cites W2047237187 @default.
- W9657784 cites W2082190528 @default.
- W9657784 cites W2095577883 @default.
- W9657784 cites W2114296159 @default.
- W9657784 cites W2144906988 @default.
- W9657784 cites W2151298633 @default.
- W9657784 cites W2293768274 @default.
- W9657784 cites W2296452361 @default.
- W9657784 cites W2611675901 @default.
- W9657784 doi "https://doi.org/10.1007/978-3-642-40994-3_25" @default.
- W9657784 hasPublicationYear "2013" @default.
- W9657784 type Work @default.
- W9657784 sameAs 9657784 @default.
- W9657784 citedByCount "1130" @default.
- W9657784 countsByYear W96577842012 @default.
- W9657784 countsByYear W96577842013 @default.
- W9657784 countsByYear W96577842014 @default.
- W9657784 countsByYear W96577842015 @default.
- W9657784 countsByYear W96577842016 @default.
- W9657784 countsByYear W96577842017 @default.
- W9657784 countsByYear W96577842018 @default.
- W9657784 countsByYear W96577842019 @default.
- W9657784 countsByYear W96577842020 @default.
- W9657784 countsByYear W96577842021 @default.
- W9657784 countsByYear W96577842022 @default.
- W9657784 countsByYear W96577842023 @default.
- W9657784 crossrefType "book-chapter" @default.
- W9657784 hasAuthorship W9657784A5007121882 @default.
- W9657784 hasAuthorship W9657784A5008367647 @default.
- W9657784 hasAuthorship W9657784A5032367579 @default.
- W9657784 hasAuthorship W9657784A5051452548 @default.
- W9657784 hasAuthorship W9657784A5060874303 @default.
- W9657784 hasAuthorship W9657784A5065359946 @default.
- W9657784 hasAuthorship W9657784A5075367917 @default.
- W9657784 hasAuthorship W9657784A5089735573 @default.
- W9657784 hasBestOaLocation W96577841 @default.
- W9657784 hasConcept C103377522 @default.
- W9657784 hasConcept C111919701 @default.
- W9657784 hasConcept C11413529 @default.
- W9657784 hasConcept C119857082 @default.
- W9657784 hasConcept C127705205 @default.
- W9657784 hasConcept C154945302 @default.
- W9657784 hasConcept C184842701 @default.
- W9657784 hasConcept C195518309 @default.
- W9657784 hasConcept C203014093 @default.
- W9657784 hasConcept C2777230681 @default.
- W9657784 hasConcept C2778403875 @default.
- W9657784 hasConcept C2779231336 @default.
- W9657784 hasConcept C2781251061 @default.
- W9657784 hasConcept C37736160 @default.
- W9657784 hasConcept C38652104 @default.
- W9657784 hasConcept C41008148 @default.
- W9657784 hasConcept C41065033 @default.
- W9657784 hasConcept C541664917 @default.
- W9657784 hasConcept C79974875 @default.
- W9657784 hasConcept C86803240 @default.
- W9657784 hasConcept C8891405 @default.
- W9657784 hasConcept C95623464 @default.
- W9657784 hasConceptScore W9657784C103377522 @default.
- W9657784 hasConceptScore W9657784C111919701 @default.
- W9657784 hasConceptScore W9657784C11413529 @default.
- W9657784 hasConceptScore W9657784C119857082 @default.
- W9657784 hasConceptScore W9657784C127705205 @default.
- W9657784 hasConceptScore W9657784C154945302 @default.
- W9657784 hasConceptScore W9657784C184842701 @default.
- W9657784 hasConceptScore W9657784C195518309 @default.
- W9657784 hasConceptScore W9657784C203014093 @default.
- W9657784 hasConceptScore W9657784C2777230681 @default.
- W9657784 hasConceptScore W9657784C2778403875 @default.
- W9657784 hasConceptScore W9657784C2779231336 @default.
- W9657784 hasConceptScore W9657784C2781251061 @default.
- W9657784 hasConceptScore W9657784C37736160 @default.
- W9657784 hasConceptScore W9657784C38652104 @default.
- W9657784 hasConceptScore W9657784C41008148 @default.
- W9657784 hasConceptScore W9657784C41065033 @default.
- W9657784 hasConceptScore W9657784C541664917 @default.
- W9657784 hasConceptScore W9657784C79974875 @default.
- W9657784 hasConceptScore W9657784C86803240 @default.
- W9657784 hasConceptScore W9657784C8891405 @default.
- W9657784 hasConceptScore W9657784C95623464 @default.
- W9657784 hasLocation W96577841 @default.
- W9657784 hasLocation W96577842 @default.