Matches in SemOpenAlex for { <https://semopenalex.org/work/W967202637> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W967202637 endingPage "16" @default.
- W967202637 startingPage "11" @default.
- W967202637 abstract "黄萎病(Greensickness)属于不可治愈性病害,每年均造成巨大的经济损失。为了培育抗病植株、得到更多的互作基因对,逐次进行生物实验排除是不现实的。为了在已知少量关联基因的情况下挖掘更多的可靠基因对,本文主要使用统计技术典型相关分析(Canonical Correlation Analysis, CCA)和数据挖掘技术半监督学习(Semi-Supervised Learning, SSL)等生物信息技术对相关基因进行学习,最终实现对关联基因的预测。研究结果能够有效地指导黄萎病抗病研究的方向、精确研究范围、提高研究速度。 Greensickness is an incurable disease, which can cause huge economic losses every year. Using a series of biological experiments to develop resistant plants and get more interaction gene is un-realistic. In order to dig more reliable genes under the premise of only having very few interaction gene, the paper mainly uses bio-IT, such as statistical techniques of Canonical Correlation Analysis and data mining techniques of Semi-Supervised Learning to study the related gene and gets the prediction of the interaction gene at the end. The result of the study can effectively guide the direction of the greensickness research, narrow the scope of the research and improve the research speed." @default.
- W967202637 created "2016-06-24" @default.
- W967202637 creator A5005665814 @default.
- W967202637 date "2015-01-01" @default.
- W967202637 modified "2023-09-25" @default.
- W967202637 title "The Prediction of Interaction Gene for Greensickness Based on Semi-Supervised Learning" @default.
- W967202637 cites W2027813786 @default.
- W967202637 cites W2028301894 @default.
- W967202637 cites W2055043387 @default.
- W967202637 cites W2057446476 @default.
- W967202637 cites W2084484077 @default.
- W967202637 cites W2097308346 @default.
- W967202637 doi "https://doi.org/10.12677/hjcb.2015.51002" @default.
- W967202637 hasPublicationYear "2015" @default.
- W967202637 type Work @default.
- W967202637 sameAs 967202637 @default.
- W967202637 citedByCount "0" @default.
- W967202637 crossrefType "journal-article" @default.
- W967202637 hasAuthorship W967202637A5005665814 @default.
- W967202637 hasBestOaLocation W9672026371 @default.
- W967202637 hasConcept C119857082 @default.
- W967202637 hasConcept C154945302 @default.
- W967202637 hasConcept C41008148 @default.
- W967202637 hasConcept C70721500 @default.
- W967202637 hasConcept C86803240 @default.
- W967202637 hasConceptScore W967202637C119857082 @default.
- W967202637 hasConceptScore W967202637C154945302 @default.
- W967202637 hasConceptScore W967202637C41008148 @default.
- W967202637 hasConceptScore W967202637C70721500 @default.
- W967202637 hasConceptScore W967202637C86803240 @default.
- W967202637 hasIssue "01" @default.
- W967202637 hasLocation W9672026371 @default.
- W967202637 hasOpenAccess W967202637 @default.
- W967202637 hasPrimaryLocation W9672026371 @default.
- W967202637 hasRelatedWork W2961085424 @default.
- W967202637 hasRelatedWork W3046775127 @default.
- W967202637 hasRelatedWork W3107474891 @default.
- W967202637 hasRelatedWork W3209574120 @default.
- W967202637 hasRelatedWork W4205958290 @default.
- W967202637 hasRelatedWork W4285260836 @default.
- W967202637 hasRelatedWork W4286629047 @default.
- W967202637 hasRelatedWork W4306321456 @default.
- W967202637 hasRelatedWork W4306674287 @default.
- W967202637 hasRelatedWork W4224009465 @default.
- W967202637 hasVolume "05" @default.
- W967202637 isParatext "false" @default.
- W967202637 isRetracted "false" @default.
- W967202637 magId "967202637" @default.
- W967202637 workType "article" @default.