Matches in SemOpenAlex for { <https://semopenalex.org/work/W970644089> ?p ?o ?g. }
- W970644089 endingPage "2442" @default.
- W970644089 startingPage "2434" @default.
- W970644089 abstract "ConspectusMetals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals." @default.
- W970644089 created "2016-06-24" @default.
- W970644089 creator A5004253218 @default.
- W970644089 creator A5065803066 @default.
- W970644089 creator A5069291692 @default.
- W970644089 creator A5072113162 @default.
- W970644089 date "2015-07-28" @default.
- W970644089 modified "2023-10-16" @default.
- W970644089 title "Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems" @default.
- W970644089 cites W1500835026 @default.
- W970644089 cites W1940436875 @default.
- W970644089 cites W1968210490 @default.
- W970644089 cites W1970263231 @default.
- W970644089 cites W1972264015 @default.
- W970644089 cites W1974930894 @default.
- W970644089 cites W1978059664 @default.
- W970644089 cites W1986696172 @default.
- W970644089 cites W1991136819 @default.
- W970644089 cites W1991354940 @default.
- W970644089 cites W1995151567 @default.
- W970644089 cites W1995713813 @default.
- W970644089 cites W1997790931 @default.
- W970644089 cites W2001731920 @default.
- W970644089 cites W2003595893 @default.
- W970644089 cites W2009310921 @default.
- W970644089 cites W2011634553 @default.
- W970644089 cites W2011817526 @default.
- W970644089 cites W2011921884 @default.
- W970644089 cites W2013976474 @default.
- W970644089 cites W2014912105 @default.
- W970644089 cites W2016368358 @default.
- W970644089 cites W2018425793 @default.
- W970644089 cites W2029729041 @default.
- W970644089 cites W2030572315 @default.
- W970644089 cites W2032122623 @default.
- W970644089 cites W2037647798 @default.
- W970644089 cites W2038215191 @default.
- W970644089 cites W2038955988 @default.
- W970644089 cites W2042624724 @default.
- W970644089 cites W2042923123 @default.
- W970644089 cites W2045389095 @default.
- W970644089 cites W2045442119 @default.
- W970644089 cites W2046062017 @default.
- W970644089 cites W2048086807 @default.
- W970644089 cites W2048599012 @default.
- W970644089 cites W2051986914 @default.
- W970644089 cites W2059778114 @default.
- W970644089 cites W2060907761 @default.
- W970644089 cites W2061159332 @default.
- W970644089 cites W2061843432 @default.
- W970644089 cites W2067746388 @default.
- W970644089 cites W2079108392 @default.
- W970644089 cites W2079507386 @default.
- W970644089 cites W2097196569 @default.
- W970644089 cites W2097929628 @default.
- W970644089 cites W2115660554 @default.
- W970644089 cites W2128171377 @default.
- W970644089 cites W2130002263 @default.
- W970644089 cites W2137768066 @default.
- W970644089 cites W2139538779 @default.
- W970644089 cites W2140014506 @default.
- W970644089 cites W2140559986 @default.
- W970644089 cites W2148904280 @default.
- W970644089 cites W2152467115 @default.
- W970644089 cites W2157400322 @default.
- W970644089 cites W2159517143 @default.
- W970644089 cites W2160575068 @default.
- W970644089 cites W2163010727 @default.
- W970644089 cites W2165710187 @default.
- W970644089 cites W2315713965 @default.
- W970644089 cites W2339241266 @default.
- W970644089 cites W2474252696 @default.
- W970644089 cites W4243940701 @default.
- W970644089 doi "https://doi.org/10.1021/acs.accounts.5b00221" @default.
- W970644089 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4542203" @default.
- W970644089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26215055" @default.
- W970644089 hasPublicationYear "2015" @default.
- W970644089 type Work @default.
- W970644089 sameAs 970644089 @default.
- W970644089 citedByCount "226" @default.
- W970644089 countsByYear W9706440892015 @default.
- W970644089 countsByYear W9706440892016 @default.
- W970644089 countsByYear W9706440892017 @default.
- W970644089 countsByYear W9706440892018 @default.
- W970644089 countsByYear W9706440892019 @default.
- W970644089 countsByYear W9706440892020 @default.
- W970644089 countsByYear W9706440892021 @default.
- W970644089 countsByYear W9706440892022 @default.
- W970644089 countsByYear W9706440892023 @default.
- W970644089 crossrefType "journal-article" @default.
- W970644089 hasAuthorship W970644089A5004253218 @default.
- W970644089 hasAuthorship W970644089A5065803066 @default.
- W970644089 hasAuthorship W970644089A5069291692 @default.
- W970644089 hasAuthorship W970644089A5072113162 @default.
- W970644089 hasBestOaLocation W9706440891 @default.
- W970644089 hasConcept C106773901 @default.
- W970644089 hasConcept C121332964 @default.
- W970644089 hasConcept C12554922 @default.