Matches in SemOpenAlex for { <https://semopenalex.org/work/W970695981> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W970695981 abstract "The beauty of affective computing is to make machine more emphatic to the user. Machines with the capability of emotion recognition can actually look inside the user’s head and act according to observed mental state. In this thesis project, we investigate different features set to build an emotion recognition system from electroencephalographic signals. We used pictures from International Affective Picture System to motivate three emotional states: positive valence (pleasant), neutral, negative valence (unpleasant) and also to induce three sets of binary states: positive valence, not positive valence; negative valence, not negative valence; and neutral, not neutral. This experiment was designed with a head cap with six electrodes at the front of the scalp which was used to record data from subjects. To solve the recognition task we developed a system based on Support Vector Machines (SVM) and extracted the features, some of them we got from literature study and some of them proposed by ourselves in order to rate the recognition of emotional states. With this system we were able to achieve an average recognition rate up to 54% for three emotional states and an average recognition rate up to 74% for the binary states, solely based on EEG signals." @default.
- W970695981 created "2016-06-24" @default.
- W970695981 creator A5024210483 @default.
- W970695981 creator A5089776504 @default.
- W970695981 creator A5090915553 @default.
- W970695981 date "2013-01-01" @default.
- W970695981 modified "2023-09-27" @default.
- W970695981 title "Emotion Recognition from EEG Signals using Machine Learning" @default.
- W970695981 cites W2001097956 @default.
- W970695981 cites W2064149108 @default.
- W970695981 cites W2120945046 @default.
- W970695981 cites W2139829411 @default.
- W970695981 cites W2162137602 @default.
- W970695981 cites W2162877473 @default.
- W970695981 cites W2169295472 @default.
- W970695981 hasPublicationYear "2013" @default.
- W970695981 type Work @default.
- W970695981 sameAs 970695981 @default.
- W970695981 citedByCount "0" @default.
- W970695981 crossrefType "journal-article" @default.
- W970695981 hasAuthorship W970695981A5024210483 @default.
- W970695981 hasAuthorship W970695981A5089776504 @default.
- W970695981 hasAuthorship W970695981A5090915553 @default.
- W970695981 hasConcept C118552586 @default.
- W970695981 hasConcept C12267149 @default.
- W970695981 hasConcept C153180895 @default.
- W970695981 hasConcept C154945302 @default.
- W970695981 hasConcept C15744967 @default.
- W970695981 hasConcept C168900304 @default.
- W970695981 hasConcept C169760540 @default.
- W970695981 hasConcept C169900460 @default.
- W970695981 hasConcept C178790620 @default.
- W970695981 hasConcept C185592680 @default.
- W970695981 hasConcept C2777438025 @default.
- W970695981 hasConcept C28490314 @default.
- W970695981 hasConcept C3020774634 @default.
- W970695981 hasConcept C33923547 @default.
- W970695981 hasConcept C41008148 @default.
- W970695981 hasConcept C48372109 @default.
- W970695981 hasConcept C522805319 @default.
- W970695981 hasConcept C66905080 @default.
- W970695981 hasConcept C94375191 @default.
- W970695981 hasConceptScore W970695981C118552586 @default.
- W970695981 hasConceptScore W970695981C12267149 @default.
- W970695981 hasConceptScore W970695981C153180895 @default.
- W970695981 hasConceptScore W970695981C154945302 @default.
- W970695981 hasConceptScore W970695981C15744967 @default.
- W970695981 hasConceptScore W970695981C168900304 @default.
- W970695981 hasConceptScore W970695981C169760540 @default.
- W970695981 hasConceptScore W970695981C169900460 @default.
- W970695981 hasConceptScore W970695981C178790620 @default.
- W970695981 hasConceptScore W970695981C185592680 @default.
- W970695981 hasConceptScore W970695981C2777438025 @default.
- W970695981 hasConceptScore W970695981C28490314 @default.
- W970695981 hasConceptScore W970695981C3020774634 @default.
- W970695981 hasConceptScore W970695981C33923547 @default.
- W970695981 hasConceptScore W970695981C41008148 @default.
- W970695981 hasConceptScore W970695981C48372109 @default.
- W970695981 hasConceptScore W970695981C522805319 @default.
- W970695981 hasConceptScore W970695981C66905080 @default.
- W970695981 hasConceptScore W970695981C94375191 @default.
- W970695981 hasLocation W9706959811 @default.
- W970695981 hasOpenAccess W970695981 @default.
- W970695981 hasPrimaryLocation W9706959811 @default.
- W970695981 hasRelatedWork W1521067671 @default.
- W970695981 hasRelatedWork W1526039235 @default.
- W970695981 hasRelatedWork W1829924905 @default.
- W970695981 hasRelatedWork W1983099598 @default.
- W970695981 hasRelatedWork W2127108986 @default.
- W970695981 hasRelatedWork W2166817813 @default.
- W970695981 hasRelatedWork W2396294141 @default.
- W970695981 hasRelatedWork W2403314750 @default.
- W970695981 hasRelatedWork W2556339656 @default.
- W970695981 hasRelatedWork W2580887161 @default.
- W970695981 hasRelatedWork W2783519296 @default.
- W970695981 hasRelatedWork W2791319332 @default.
- W970695981 hasRelatedWork W2799160222 @default.
- W970695981 hasRelatedWork W2903335023 @default.
- W970695981 hasRelatedWork W2918624131 @default.
- W970695981 hasRelatedWork W2946917057 @default.
- W970695981 hasRelatedWork W3013607207 @default.
- W970695981 hasRelatedWork W3021990843 @default.
- W970695981 hasRelatedWork W69300324 @default.
- W970695981 hasRelatedWork W2182581456 @default.
- W970695981 isParatext "false" @default.
- W970695981 isRetracted "false" @default.
- W970695981 magId "970695981" @default.
- W970695981 workType "article" @default.