Matches in SemOpenAlex for { <https://semopenalex.org/work/W970944512> ?p ?o ?g. }
- W970944512 abstract "Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling.In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution.In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests.In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks." @default.
- W970944512 created "2016-06-24" @default.
- W970944512 creator A5079214852 @default.
- W970944512 date "2009-03-26" @default.
- W970944512 modified "2023-09-28" @default.
- W970944512 title "Statistical methods for biomedical signal analysis and processing" @default.
- W970944512 cites W1541334799 @default.
- W970944512 cites W1542782021 @default.
- W970944512 cites W1545239319 @default.
- W970944512 cites W1554544485 @default.
- W970944512 cites W1591946105 @default.
- W970944512 cites W1964854912 @default.
- W970944512 cites W1965392255 @default.
- W970944512 cites W1965734230 @default.
- W970944512 cites W1966296929 @default.
- W970944512 cites W1978845507 @default.
- W970944512 cites W1995747963 @default.
- W970944512 cites W1998885996 @default.
- W970944512 cites W2003923857 @default.
- W970944512 cites W2007149632 @default.
- W970944512 cites W2013418965 @default.
- W970944512 cites W2017877823 @default.
- W970944512 cites W2019511759 @default.
- W970944512 cites W2021640751 @default.
- W970944512 cites W2026348689 @default.
- W970944512 cites W2027231794 @default.
- W970944512 cites W2041920735 @default.
- W970944512 cites W2052029481 @default.
- W970944512 cites W2052199757 @default.
- W970944512 cites W2062856359 @default.
- W970944512 cites W2064117760 @default.
- W970944512 cites W2067435460 @default.
- W970944512 cites W2068765647 @default.
- W970944512 cites W2069691746 @default.
- W970944512 cites W2079010244 @default.
- W970944512 cites W2082354808 @default.
- W970944512 cites W2082870453 @default.
- W970944512 cites W2092537528 @default.
- W970944512 cites W2096071102 @default.
- W970944512 cites W2098979973 @default.
- W970944512 cites W2099290282 @default.
- W970944512 cites W2099444532 @default.
- W970944512 cites W2103179919 @default.
- W970944512 cites W2103402707 @default.
- W970944512 cites W2115469135 @default.
- W970944512 cites W2116343639 @default.
- W970944512 cites W2118386984 @default.
- W970944512 cites W2119249988 @default.
- W970944512 cites W2121940245 @default.
- W970944512 cites W2130539320 @default.
- W970944512 cites W2132914434 @default.
- W970944512 cites W2133175895 @default.
- W970944512 cites W2133285333 @default.
- W970944512 cites W2136590189 @default.
- W970944512 cites W2140789035 @default.
- W970944512 cites W2141591465 @default.
- W970944512 cites W2142384583 @default.
- W970944512 cites W2147201990 @default.
- W970944512 cites W2147982258 @default.
- W970944512 cites W2148946811 @default.
- W970944512 cites W2149213494 @default.
- W970944512 cites W2150060382 @default.
- W970944512 cites W2150642845 @default.
- W970944512 cites W2150753219 @default.
- W970944512 cites W2152025003 @default.
- W970944512 cites W2152179757 @default.
- W970944512 cites W2152873414 @default.
- W970944512 cites W2153635508 @default.
- W970944512 cites W2153733791 @default.
- W970944512 cites W2154053567 @default.
- W970944512 cites W2154899385 @default.
- W970944512 cites W2156733531 @default.
- W970944512 cites W2157628367 @default.
- W970944512 cites W2157702164 @default.
- W970944512 cites W2158914083 @default.
- W970944512 cites W2161905064 @default.
- W970944512 cites W2163255491 @default.
- W970944512 cites W2168033859 @default.
- W970944512 cites W2172272468 @default.
- W970944512 cites W2177960617 @default.
- W970944512 cites W2326872408 @default.
- W970944512 cites W2462639216 @default.
- W970944512 cites W2469665031 @default.
- W970944512 cites W2530171160 @default.
- W970944512 cites W2911956715 @default.
- W970944512 cites W2941795809 @default.
- W970944512 cites W3148499377 @default.
- W970944512 cites W101836494 @default.
- W970944512 doi "https://doi.org/10.6092/unibo/amsdottorato/1358" @default.
- W970944512 hasPublicationYear "2009" @default.
- W970944512 type Work @default.
- W970944512 sameAs 970944512 @default.
- W970944512 citedByCount "0" @default.
- W970944512 crossrefType "dissertation" @default.
- W970944512 hasAuthorship W970944512A5079214852 @default.
- W970944512 hasConcept C104267543 @default.
- W970944512 hasConcept C105125183 @default.
- W970944512 hasConcept C11413529 @default.
- W970944512 hasConcept C115961682 @default.
- W970944512 hasConcept C119857082 @default.