Matches in SemOpenAlex for { <https://semopenalex.org/work/W97108385> ?p ?o ?g. }
- W97108385 endingPage "1238" @default.
- W97108385 startingPage "1151" @default.
- W97108385 abstract "Constrained matrix and tensor factorizations, also called penalized matrix/tensor decompositions play a key role in Latent Variable Models (LVM), Multilinear Blind Source Separation (MBSS), and (multiway) Generalized Component Analysis (GCA) and they are important unifying topics in signal processing and linear and multilinear algebra. This chapter introduces basic linear and multilinear models for matrix and tensor factorizations and decompositions. The “workhorse” of this chapter consists of constrained matrix decompositions and their extensions, including multilinear models which perform multiway matrix or tensor factorizations, with various constraints such as orthogonality, statistical independence, nonnegativity and/or sparsity. The constrained matrix and tensor decompositions are very attractive because they take into account spatial, temporal and/or spectral information and provide links among the various extracted factors or latent variables while providing often physical or physiological meanings and interpretations. In fact matrix/tensor decompositions are important techniques for blind source separation, dimensionality reduction, pattern recognition, object detection, classification, multiway clustering, sparse representation and coding and data fusion." @default.
- W97108385 created "2016-06-24" @default.
- W97108385 creator A5018676117 @default.
- W97108385 date "2014-01-01" @default.
- W97108385 modified "2023-10-16" @default.
- W97108385 title "Unsupervised Learning Algorithms and Latent Variable Models: PCA/SVD, CCA/PLS, ICA, NMF, etc." @default.
- W97108385 cites W1246381107 @default.
- W97108385 cites W1489793438 @default.
- W97108385 cites W1528056948 @default.
- W97108385 cites W1534371233 @default.
- W97108385 cites W1534396055 @default.
- W97108385 cites W1547060653 @default.
- W97108385 cites W1548802052 @default.
- W97108385 cites W1562895369 @default.
- W97108385 cites W1566599344 @default.
- W97108385 cites W1580974668 @default.
- W97108385 cites W1592941960 @default.
- W97108385 cites W1594523130 @default.
- W97108385 cites W1599313122 @default.
- W97108385 cites W1814521481 @default.
- W97108385 cites W182431003 @default.
- W97108385 cites W1902027874 @default.
- W97108385 cites W1963826206 @default.
- W97108385 cites W1965367308 @default.
- W97108385 cites W1967696752 @default.
- W97108385 cites W1972087067 @default.
- W97108385 cites W1973246170 @default.
- W97108385 cites W1975900269 @default.
- W97108385 cites W1977067929 @default.
- W97108385 cites W1978680118 @default.
- W97108385 cites W1979868459 @default.
- W97108385 cites W1983467829 @default.
- W97108385 cites W1986826403 @default.
- W97108385 cites W1989306415 @default.
- W97108385 cites W1989746184 @default.
- W97108385 cites W1989881099 @default.
- W97108385 cites W1991380130 @default.
- W97108385 cites W1992918752 @default.
- W97108385 cites W1998269045 @default.
- W97108385 cites W2000215628 @default.
- W97108385 cites W2002270820 @default.
- W97108385 cites W2008334035 @default.
- W97108385 cites W2010004246 @default.
- W97108385 cites W2012769612 @default.
- W97108385 cites W2013807324 @default.
- W97108385 cites W2013912476 @default.
- W97108385 cites W2017288758 @default.
- W97108385 cites W2017948584 @default.
- W97108385 cites W2018282388 @default.
- W97108385 cites W2021974973 @default.
- W97108385 cites W2022242697 @default.
- W97108385 cites W2024165284 @default.
- W97108385 cites W2024166170 @default.
- W97108385 cites W2024872356 @default.
- W97108385 cites W2025341678 @default.
- W97108385 cites W2026034143 @default.
- W97108385 cites W2027170056 @default.
- W97108385 cites W2028838544 @default.
- W97108385 cites W2029885439 @default.
- W97108385 cites W2030136594 @default.
- W97108385 cites W2030524974 @default.
- W97108385 cites W2039637513 @default.
- W97108385 cites W2039844283 @default.
- W97108385 cites W2040284954 @default.
- W97108385 cites W2041115669 @default.
- W97108385 cites W2041326514 @default.
- W97108385 cites W2042901969 @default.
- W97108385 cites W2043545458 @default.
- W97108385 cites W2043956433 @default.
- W97108385 cites W2044809283 @default.
- W97108385 cites W2045405869 @default.
- W97108385 cites W2046513212 @default.
- W97108385 cites W2052632856 @default.
- W97108385 cites W2054954154 @default.
- W97108385 cites W2055070149 @default.
- W97108385 cites W2056857971 @default.
- W97108385 cites W2057503509 @default.
- W97108385 cites W2059745395 @default.
- W97108385 cites W2069317438 @default.
- W97108385 cites W2073309755 @default.
- W97108385 cites W2075427932 @default.
- W97108385 cites W2076455317 @default.
- W97108385 cites W2078465266 @default.
- W97108385 cites W2078604986 @default.
- W97108385 cites W2080196643 @default.
- W97108385 cites W2081504597 @default.
- W97108385 cites W2085937140 @default.
- W97108385 cites W2091494114 @default.
- W97108385 cites W2092953055 @default.
- W97108385 cites W2093283732 @default.
- W97108385 cites W2095715335 @default.
- W97108385 cites W2096710051 @default.
- W97108385 cites W2097283332 @default.
- W97108385 cites W2097417531 @default.
- W97108385 cites W2098290597 @default.
- W97108385 cites W2100235303 @default.
- W97108385 cites W2102536337 @default.
- W97108385 cites W2103056111 @default.