Matches in SemOpenAlex for { <https://semopenalex.org/work/W972367598> ?p ?o ?g. }
- W972367598 abstract "Traffic congestion causes unnecessary delay, pollution and increased fuel consumption. In this thesis we address this problem by proposing new algorithmic techniques to reduce traffic congestion and we contribute to the development of a new Intelligent Transportation System. We present a method to determine speed limits, in which we combine a traffic flow model with reinforcement learning techniques. A traffic flow optimization problem is formulated as a Markov Decision Process, and subsequently solved using Q-learning enhanced with value function approximation. This results in a single-agent and multi-agent approach to assign speed limits to highway sections. A difference between our work and existing approaches is that we also take traffic predictions into account. The performance of our method is evaluated in macroscopic simulations, in which we show that it is able to significantly reduce congestion under high traffic demands. A case study has been performed to evaluate the effectiveness of our method in microscopic simulations. The case study serves as a proof of concept and shows that our method performs well on a real scenario." @default.
- W972367598 created "2016-06-24" @default.
- W972367598 creator A5034718892 @default.
- W972367598 date "2014-07-16" @default.
- W972367598 modified "2023-09-23" @default.
- W972367598 title "Traffic Flow Optimization using Reinforcement Learning" @default.
- W972367598 cites W1484203172 @default.
- W972367598 cites W1543659671 @default.
- W972367598 cites W1564458389 @default.
- W972367598 cites W1580193573 @default.
- W972367598 cites W1584201434 @default.
- W972367598 cites W1604563240 @default.
- W972367598 cites W2031727428 @default.
- W972367598 cites W2037141248 @default.
- W972367598 cites W2048984163 @default.
- W972367598 cites W2074500080 @default.
- W972367598 cites W2100677568 @default.
- W972367598 cites W2101383794 @default.
- W972367598 cites W2101786389 @default.
- W972367598 cites W2111688141 @default.
- W972367598 cites W2119567691 @default.
- W972367598 cites W2121099728 @default.
- W972367598 cites W2123362463 @default.
- W972367598 cites W2124776405 @default.
- W972367598 cites W2134866034 @default.
- W972367598 cites W2137270647 @default.
- W972367598 cites W2148698772 @default.
- W972367598 cites W2150339816 @default.
- W972367598 cites W2151908411 @default.
- W972367598 cites W24067677 @default.
- W972367598 cites W2961703895 @default.
- W972367598 cites W3011120880 @default.
- W972367598 cites W603776396 @default.
- W972367598 cites W80219033 @default.
- W972367598 cites W1492835523 @default.
- W972367598 hasPublicationYear "2014" @default.
- W972367598 type Work @default.
- W972367598 sameAs 972367598 @default.
- W972367598 citedByCount "0" @default.
- W972367598 crossrefType "journal-article" @default.
- W972367598 hasAuthorship W972367598A5034718892 @default.
- W972367598 hasConcept C105795698 @default.
- W972367598 hasConcept C106189395 @default.
- W972367598 hasConcept C111919701 @default.
- W972367598 hasConcept C126255220 @default.
- W972367598 hasConcept C127413603 @default.
- W972367598 hasConcept C154945302 @default.
- W972367598 hasConcept C159886148 @default.
- W972367598 hasConcept C207512268 @default.
- W972367598 hasConcept C22212356 @default.
- W972367598 hasConcept C2524010 @default.
- W972367598 hasConcept C2779888511 @default.
- W972367598 hasConcept C33923547 @default.
- W972367598 hasConcept C38349280 @default.
- W972367598 hasConcept C38652104 @default.
- W972367598 hasConcept C41008148 @default.
- W972367598 hasConcept C47796450 @default.
- W972367598 hasConcept C97541855 @default.
- W972367598 hasConcept C98045186 @default.
- W972367598 hasConceptScore W972367598C105795698 @default.
- W972367598 hasConceptScore W972367598C106189395 @default.
- W972367598 hasConceptScore W972367598C111919701 @default.
- W972367598 hasConceptScore W972367598C126255220 @default.
- W972367598 hasConceptScore W972367598C127413603 @default.
- W972367598 hasConceptScore W972367598C154945302 @default.
- W972367598 hasConceptScore W972367598C159886148 @default.
- W972367598 hasConceptScore W972367598C207512268 @default.
- W972367598 hasConceptScore W972367598C22212356 @default.
- W972367598 hasConceptScore W972367598C2524010 @default.
- W972367598 hasConceptScore W972367598C2779888511 @default.
- W972367598 hasConceptScore W972367598C33923547 @default.
- W972367598 hasConceptScore W972367598C38349280 @default.
- W972367598 hasConceptScore W972367598C38652104 @default.
- W972367598 hasConceptScore W972367598C41008148 @default.
- W972367598 hasConceptScore W972367598C47796450 @default.
- W972367598 hasConceptScore W972367598C97541855 @default.
- W972367598 hasConceptScore W972367598C98045186 @default.
- W972367598 hasLocation W9723675981 @default.
- W972367598 hasOpenAccess W972367598 @default.
- W972367598 hasPrimaryLocation W9723675981 @default.
- W972367598 hasRelatedWork W2032576108 @default.
- W972367598 hasRelatedWork W2098837446 @default.
- W972367598 hasRelatedWork W2183679353 @default.
- W972367598 hasRelatedWork W2465314133 @default.
- W972367598 hasRelatedWork W2555207758 @default.
- W972367598 hasRelatedWork W2747046834 @default.
- W972367598 hasRelatedWork W2767339426 @default.
- W972367598 hasRelatedWork W2773649677 @default.
- W972367598 hasRelatedWork W2810880204 @default.
- W972367598 hasRelatedWork W2896023251 @default.
- W972367598 hasRelatedWork W2905509591 @default.
- W972367598 hasRelatedWork W2989721371 @default.
- W972367598 hasRelatedWork W3009453529 @default.
- W972367598 hasRelatedWork W3155625271 @default.
- W972367598 hasRelatedWork W3171647700 @default.
- W972367598 hasRelatedWork W3186245354 @default.
- W972367598 hasRelatedWork W3202630425 @default.
- W972367598 hasRelatedWork W603558888 @default.
- W972367598 hasRelatedWork W645870972 @default.
- W972367598 hasRelatedWork W2827260282 @default.