Matches in SemOpenAlex for { <https://semopenalex.org/work/W97652101> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W97652101 endingPage "588" @default.
- W97652101 startingPage "588" @default.
- W97652101 abstract "This chapter discusses a knowledge representation, called a Bayesian network, that allows one to learn uncertain relationships in a domain by combining expert domain knowledge and statistical data. A Bayesian network is a graphical representation of uncertain knowledge that most people find easy to construct directly from domain knowledge. In addition, the representation has formal probabilistic semantics, making it suitable for statistical manipulation. Over the past decade, the Bayesian network has become a popular representation for encoding uncertain expert knowledge in expert systems. More recently, researchers have developed methods for learning Bayesian networks from a combination of expert knowledge and data. The techniques that have been developed are new and still evolving, but they have been shown to be remarkably effective in some domains. Learning using Bayesian networks is similar to that using neural networks. The process employing Bayesian networks, however, has two important advantages: (1) one can easily encode expert knowledge in a Bayesian network, and use this knowledge to increase the efficiency and accuracy of learning; and (2) the nodes and arcs in learned Bayesian networks often correspond to recognizable distinctions and causal relationships." @default.
- W97652101 created "2016-06-24" @default.
- W97652101 creator A5016386034 @default.
- W97652101 date "1995-01-01" @default.
- W97652101 modified "2023-10-14" @default.
- W97652101 title "Learning With Bayesian Networks" @default.
- W97652101 cites W1517993545 @default.
- W97652101 cites W1669437150 @default.
- W97652101 cites W2069469807 @default.
- W97652101 cites W4236354166 @default.
- W97652101 doi "https://doi.org/10.1016/b978-1-55860-377-6.50079-7" @default.
- W97652101 hasPublicationYear "1995" @default.
- W97652101 type Work @default.
- W97652101 sameAs 97652101 @default.
- W97652101 citedByCount "248" @default.
- W97652101 countsByYear W976521012012 @default.
- W97652101 countsByYear W976521012013 @default.
- W97652101 countsByYear W976521012014 @default.
- W97652101 countsByYear W976521012015 @default.
- W97652101 countsByYear W976521012016 @default.
- W97652101 countsByYear W976521012017 @default.
- W97652101 countsByYear W976521012018 @default.
- W97652101 countsByYear W976521012019 @default.
- W97652101 countsByYear W976521012020 @default.
- W97652101 countsByYear W976521012021 @default.
- W97652101 countsByYear W976521012022 @default.
- W97652101 countsByYear W976521012023 @default.
- W97652101 crossrefType "book-chapter" @default.
- W97652101 hasAuthorship W97652101A5016386034 @default.
- W97652101 hasConcept C104317684 @default.
- W97652101 hasConcept C107673813 @default.
- W97652101 hasConcept C119857082 @default.
- W97652101 hasConcept C134306372 @default.
- W97652101 hasConcept C154945302 @default.
- W97652101 hasConcept C155846161 @default.
- W97652101 hasConcept C160234255 @default.
- W97652101 hasConcept C161301231 @default.
- W97652101 hasConcept C17744445 @default.
- W97652101 hasConcept C184337299 @default.
- W97652101 hasConcept C185592680 @default.
- W97652101 hasConcept C199360897 @default.
- W97652101 hasConcept C199539241 @default.
- W97652101 hasConcept C207685749 @default.
- W97652101 hasConcept C2776359362 @default.
- W97652101 hasConcept C33724603 @default.
- W97652101 hasConcept C33923547 @default.
- W97652101 hasConcept C36503486 @default.
- W97652101 hasConcept C41008148 @default.
- W97652101 hasConcept C49937458 @default.
- W97652101 hasConcept C55493867 @default.
- W97652101 hasConcept C66746571 @default.
- W97652101 hasConcept C71983512 @default.
- W97652101 hasConcept C94625758 @default.
- W97652101 hasConceptScore W97652101C104317684 @default.
- W97652101 hasConceptScore W97652101C107673813 @default.
- W97652101 hasConceptScore W97652101C119857082 @default.
- W97652101 hasConceptScore W97652101C134306372 @default.
- W97652101 hasConceptScore W97652101C154945302 @default.
- W97652101 hasConceptScore W97652101C155846161 @default.
- W97652101 hasConceptScore W97652101C160234255 @default.
- W97652101 hasConceptScore W97652101C161301231 @default.
- W97652101 hasConceptScore W97652101C17744445 @default.
- W97652101 hasConceptScore W97652101C184337299 @default.
- W97652101 hasConceptScore W97652101C185592680 @default.
- W97652101 hasConceptScore W97652101C199360897 @default.
- W97652101 hasConceptScore W97652101C199539241 @default.
- W97652101 hasConceptScore W97652101C207685749 @default.
- W97652101 hasConceptScore W97652101C2776359362 @default.
- W97652101 hasConceptScore W97652101C33724603 @default.
- W97652101 hasConceptScore W97652101C33923547 @default.
- W97652101 hasConceptScore W97652101C36503486 @default.
- W97652101 hasConceptScore W97652101C41008148 @default.
- W97652101 hasConceptScore W97652101C49937458 @default.
- W97652101 hasConceptScore W97652101C55493867 @default.
- W97652101 hasConceptScore W97652101C66746571 @default.
- W97652101 hasConceptScore W97652101C71983512 @default.
- W97652101 hasConceptScore W97652101C94625758 @default.
- W97652101 hasLocation W976521011 @default.
- W97652101 hasOpenAccess W97652101 @default.
- W97652101 hasPrimaryLocation W976521011 @default.
- W97652101 hasRelatedWork W1461055456 @default.
- W97652101 hasRelatedWork W1715419791 @default.
- W97652101 hasRelatedWork W1842008917 @default.
- W97652101 hasRelatedWork W2121819043 @default.
- W97652101 hasRelatedWork W2126934800 @default.
- W97652101 hasRelatedWork W2361280515 @default.
- W97652101 hasRelatedWork W2963716487 @default.
- W97652101 hasRelatedWork W3013265890 @default.
- W97652101 hasRelatedWork W643788828 @default.
- W97652101 hasRelatedWork W2184964411 @default.
- W97652101 isParatext "false" @default.
- W97652101 isRetracted "false" @default.
- W97652101 magId "97652101" @default.
- W97652101 workType "book-chapter" @default.