Matches in SemOpenAlex for { <https://semopenalex.org/work/W97977249> ?p ?o ?g. }
- W97977249 abstract "Data assimilation (DA) is a method that optimally combines imperfect models and uncertain observations to correct model states using new information acquired from the incoming observations. In recent years, DA has been extensively used for improving the uncertainty of hydrologic prediction, largely due to the emergence of advanced remote sensing tools for observations of soil moisture, river discharge and precipitation. Several DA methods have been explored in hydrology; however the choice and the effectiveness of a specific DA method may vary depending on the model and the observation. The goal of this dissertation study was reducing streamflow forecast uncertainty, and was carried out in three parts. First, the effectiveness of four different DA methods (ensemble Kalman filter (EnKF), particle filter (PF), Maximum Likelihood Ensemble Filter (MLEF) and variational method (VAR)) for improving streamflow forecasting were evaluated. In-situ discharge was assimilated into The United States National Weather Service (NWS) river forecasting model (Sacramento Soil Moisture Accounting model (SAC-SMA)) for Greens Bayou basin (with area of 178km2), in eastern Texas. The results indicate that all the four DA methods enhanced the short lead time forecast when compared to the model without the data assimilation; however the performances of each method vary with flow magnitude and longer lead time forecasts. Overall, the PF and MLEF performed superior to other DA algorithms across all flow regimes. In the second part of this thesis, the value of satellite-based soil moisture retrievals for enhancing river discharge was assessed. Surface and root zone satellite-based soil moisture retrievals from AMSR-E (passive microwave) and ASCAT (active microwave) sensors were separately assimilated into the SAC-SMA model in Greens bayou using ensemble Kalman filter. Two different data assimilation experiments were carried out over a period of four years (2007 to 2010): updating the soil moisture state of the SAC-SMA model and combined correcting of soil moisture and total channel inflow (TCI) of the model. It was found that the remotely-sensed soil moisture assimilation reduced the discharge RMSE compared to the open loop for both assimilation schemes, and there was no appreciable difference between surface and root zone soil moisture results, as well as between the AMSR-E and ASCAT results. Furthermore, the dual correcting of soil moisture and TCI produced lower river discharge RMSE. In the third part, the utility of passive microwave-based river width estimates for river discharge nowcasting and forecasting were assessed for two major rivers, the Ganges and Brahmaputra, in south Asia. Multiple upstream satellite observations of river and flood plains were used to track downstream flood wave propagation, and using a cross-validation regression model, the downstream river discharge was forecasted for lead times up to 15 days. The results showed that satellite derived flow signals were able to detect the propagation of a…" @default.
- W97977249 created "2016-06-24" @default.
- W97977249 creator A5052792839 @default.
- W97977249 date "2013-01-01" @default.
- W97977249 modified "2023-09-23" @default.
- W97977249 title "Hydrologic Data Assimilation for Operational Streamflow Forecasting" @default.
- W97977249 cites W1506734766 @default.
- W97977249 cites W1518925839 @default.
- W97977249 cites W1527594523 @default.
- W97977249 cites W1574940769 @default.
- W97977249 cites W1586274211 @default.
- W97977249 cites W1909649765 @default.
- W97977249 cites W1971434946 @default.
- W97977249 cites W1972007531 @default.
- W97977249 cites W1984310153 @default.
- W97977249 cites W1990612304 @default.
- W97977249 cites W1991589602 @default.
- W97977249 cites W1993990365 @default.
- W97977249 cites W1994147467 @default.
- W97977249 cites W1995622703 @default.
- W97977249 cites W1996762101 @default.
- W97977249 cites W2000345915 @default.
- W97977249 cites W2011106705 @default.
- W97977249 cites W2014034374 @default.
- W97977249 cites W2028464044 @default.
- W97977249 cites W2036056913 @default.
- W97977249 cites W2036774006 @default.
- W97977249 cites W2037432545 @default.
- W97977249 cites W2039163601 @default.
- W97977249 cites W2042974036 @default.
- W97977249 cites W2046517373 @default.
- W97977249 cites W2047393119 @default.
- W97977249 cites W2048987877 @default.
- W97977249 cites W2049760535 @default.
- W97977249 cites W2058923530 @default.
- W97977249 cites W2063422594 @default.
- W97977249 cites W2083093485 @default.
- W97977249 cites W2092878288 @default.
- W97977249 cites W2096383421 @default.
- W97977249 cites W2096569581 @default.
- W97977249 cites W2096586519 @default.
- W97977249 cites W2099644586 @default.
- W97977249 cites W2100401723 @default.
- W97977249 cites W2101394945 @default.
- W97977249 cites W2105934661 @default.
- W97977249 cites W2107513045 @default.
- W97977249 cites W2108031818 @default.
- W97977249 cites W2114971337 @default.
- W97977249 cites W2117427339 @default.
- W97977249 cites W2119622709 @default.
- W97977249 cites W2128410490 @default.
- W97977249 cites W2132600099 @default.
- W97977249 cites W2134710467 @default.
- W97977249 cites W2137807472 @default.
- W97977249 cites W2138763184 @default.
- W97977249 cites W2145369457 @default.
- W97977249 cites W2145517480 @default.
- W97977249 cites W2148557261 @default.
- W97977249 cites W2148691574 @default.
- W97977249 cites W2157980636 @default.
- W97977249 cites W2160337655 @default.
- W97977249 cites W2167962096 @default.
- W97977249 cites W2170396766 @default.
- W97977249 cites W2172996688 @default.
- W97977249 cites W2173896314 @default.
- W97977249 cites W2178242555 @default.
- W97977249 cites W2892308315 @default.
- W97977249 cites W2737097818 @default.
- W97977249 hasPublicationYear "2013" @default.
- W97977249 type Work @default.
- W97977249 sameAs 97977249 @default.
- W97977249 citedByCount "0" @default.
- W97977249 crossrefType "journal-article" @default.
- W97977249 hasAuthorship W97977249A5052792839 @default.
- W97977249 hasConcept C105795698 @default.
- W97977249 hasConcept C107054158 @default.
- W97977249 hasConcept C126197015 @default.
- W97977249 hasConcept C126645576 @default.
- W97977249 hasConcept C127313418 @default.
- W97977249 hasConcept C127413603 @default.
- W97977249 hasConcept C146978453 @default.
- W97977249 hasConcept C153294291 @default.
- W97977249 hasConcept C157286648 @default.
- W97977249 hasConcept C183195422 @default.
- W97977249 hasConcept C187320778 @default.
- W97977249 hasConcept C19269812 @default.
- W97977249 hasConcept C205649164 @default.
- W97977249 hasConcept C206833254 @default.
- W97977249 hasConcept C24552861 @default.
- W97977249 hasConcept C33923547 @default.
- W97977249 hasConcept C39432304 @default.
- W97977249 hasConcept C49204034 @default.
- W97977249 hasConcept C53739315 @default.
- W97977249 hasConcept C58640448 @default.
- W97977249 hasConcept C76886044 @default.
- W97977249 hasConcept C79334102 @default.
- W97977249 hasConceptScore W97977249C105795698 @default.
- W97977249 hasConceptScore W97977249C107054158 @default.
- W97977249 hasConceptScore W97977249C126197015 @default.
- W97977249 hasConceptScore W97977249C126645576 @default.