Matches in SemOpenAlex for { <https://semopenalex.org/work/W98192633> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W98192633 endingPage "191" @default.
- W98192633 startingPage "179" @default.
- W98192633 abstract "We propose MTSC, a filter-and-refine framework for time series Nearest Neighbor (NN) classification. Training time series belonging to certain classes are first modeled through Hidden Markov Models (HMMs). Given an unlabeled query, and at the filter step, we identify the top K models that have most likely produced the query. At the refine step, a distance measure is applied between the query and all training time series of the top K models. The query is then assigned with the class of the NN. In our experiments, we first evaluated the NN classification error rate of HMMs compared to three state-of-the-art distance measures on 45 time series datasets of the UCR archive, and showed that modeling time series with HMMs achieves lower error rates in 30 datasets and equal error rates in 4. Secondly, we compared MTSC with Cross Validation defined over the three measures on 33 datasets, and we observed that MTSC is at least as good as the competitor method in 23 datasets, while achieving competitive speedups, showing its effectiveness and efficiency." @default.
- W98192633 created "2016-06-24" @default.
- W98192633 creator A5043054817 @default.
- W98192633 creator A5044999523 @default.
- W98192633 date "2014-01-01" @default.
- W98192633 modified "2023-10-17" @default.
- W98192633 title "Model-Based Time Series Classification" @default.
- W98192633 cites W131856359 @default.
- W98192633 cites W1499049447 @default.
- W98192633 cites W1762159181 @default.
- W98192633 cites W1968653071 @default.
- W98192633 cites W1970861901 @default.
- W98192633 cites W1974339580 @default.
- W98192633 cites W1980516134 @default.
- W98192633 cites W1989037929 @default.
- W98192633 cites W2029767187 @default.
- W98192633 cites W2030863907 @default.
- W98192633 cites W2039333445 @default.
- W98192633 cites W2086699924 @default.
- W98192633 cites W2107199788 @default.
- W98192633 cites W2112877387 @default.
- W98192633 cites W2118371392 @default.
- W98192633 cites W2118529802 @default.
- W98192633 cites W2120412255 @default.
- W98192633 cites W2125838338 @default.
- W98192633 cites W2128160875 @default.
- W98192633 cites W2133706543 @default.
- W98192633 cites W2137742135 @default.
- W98192633 cites W2143325592 @default.
- W98192633 cites W2162756694 @default.
- W98192633 cites W2167746888 @default.
- W98192633 cites W4241186228 @default.
- W98192633 doi "https://doi.org/10.1007/978-3-319-12571-8_16" @default.
- W98192633 hasPublicationYear "2014" @default.
- W98192633 type Work @default.
- W98192633 sameAs 98192633 @default.
- W98192633 citedByCount "3" @default.
- W98192633 countsByYear W981926332019 @default.
- W98192633 countsByYear W981926332020 @default.
- W98192633 countsByYear W981926332021 @default.
- W98192633 crossrefType "book-chapter" @default.
- W98192633 hasAuthorship W98192633A5043054817 @default.
- W98192633 hasAuthorship W98192633A5044999523 @default.
- W98192633 hasConcept C106131492 @default.
- W98192633 hasConcept C113238511 @default.
- W98192633 hasConcept C119857082 @default.
- W98192633 hasConcept C124101348 @default.
- W98192633 hasConcept C143724316 @default.
- W98192633 hasConcept C151406439 @default.
- W98192633 hasConcept C151730666 @default.
- W98192633 hasConcept C153180895 @default.
- W98192633 hasConcept C154945302 @default.
- W98192633 hasConcept C23224414 @default.
- W98192633 hasConcept C2777212361 @default.
- W98192633 hasConcept C31972630 @default.
- W98192633 hasConcept C40969351 @default.
- W98192633 hasConcept C41008148 @default.
- W98192633 hasConcept C86803240 @default.
- W98192633 hasConceptScore W98192633C106131492 @default.
- W98192633 hasConceptScore W98192633C113238511 @default.
- W98192633 hasConceptScore W98192633C119857082 @default.
- W98192633 hasConceptScore W98192633C124101348 @default.
- W98192633 hasConceptScore W98192633C143724316 @default.
- W98192633 hasConceptScore W98192633C151406439 @default.
- W98192633 hasConceptScore W98192633C151730666 @default.
- W98192633 hasConceptScore W98192633C153180895 @default.
- W98192633 hasConceptScore W98192633C154945302 @default.
- W98192633 hasConceptScore W98192633C23224414 @default.
- W98192633 hasConceptScore W98192633C2777212361 @default.
- W98192633 hasConceptScore W98192633C31972630 @default.
- W98192633 hasConceptScore W98192633C40969351 @default.
- W98192633 hasConceptScore W98192633C41008148 @default.
- W98192633 hasConceptScore W98192633C86803240 @default.
- W98192633 hasLocation W981926331 @default.
- W98192633 hasOpenAccess W98192633 @default.
- W98192633 hasPrimaryLocation W981926331 @default.
- W98192633 hasRelatedWork W1964982224 @default.
- W98192633 hasRelatedWork W2080650820 @default.
- W98192633 hasRelatedWork W2146076056 @default.
- W98192633 hasRelatedWork W2150798635 @default.
- W98192633 hasRelatedWork W2163104979 @default.
- W98192633 hasRelatedWork W2371691720 @default.
- W98192633 hasRelatedWork W2539985974 @default.
- W98192633 hasRelatedWork W2883887418 @default.
- W98192633 hasRelatedWork W3021364800 @default.
- W98192633 hasRelatedWork W4253950112 @default.
- W98192633 isParatext "false" @default.
- W98192633 isRetracted "false" @default.
- W98192633 magId "98192633" @default.
- W98192633 workType "book-chapter" @default.