Matches in SemOpenAlex for { <https://semopenalex.org/work/W9859618> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W9859618 abstract "Our objective in this thesis is to develop a method for establishing an object recognition system based on the matching of image regions. A region is segmented from image based on colour homogeneity of pixels. The method can be applied to a number of computer vision applications such as object recognition (in general) and image retrieval. The motivation for using regions as image primitives is that they can be represented invariantly to a group of geometric transformations and regions are stable under scaling.We model each object of interest in our database using a single frontal image. The recognition task is to determine the presence of object(s) of interest in scene images. We propose a novel method for afflne invariant representation of image regions in the form of Attributed Relational Graph (ARG). To make image regions comparable for matching, we project each region to an affine invariant space and describe it using a set of unary measurements. The distinctiveness of these features is enhanced by describing the relation between the region and its neighbours. We limit ourselves to the low order relations, binary relations, to minimise the combinatorial complexity of both feature extraction and model matching, and to maximise the probability of the features being observed. We propose two sets of binary measurements: geometric relations between pair of regions, and colour profile on the line connecting the centroids of regions. We demonstrate that the former measurements are very discriminative when the shape of segmented regions is informative. However, they are susceptible to distortion of regions boundaries as a result of severe geometric transformations. In contrast, the colour profile binary measurements are very robust.Using this representation we construct a graph to represent the regions in the scene image and refer to it as the scene graph. Similarly a graph containing the regions of all object models is constructed and referred to as the model graph. We consider the object recognition as the problem of matching the scene graph and model graphs. We adopt the probabilistic relaxation labelling technique for our problem. The method is modified to cope better with image segmentation errors. The implemented algorithm is evaluated under affine transformation, occlusion, illumination change and cluttered scene. Good performance for recognition even under severe scaling and in cluttered scenes is reported. Key words: Region Matching, Object Recognition, Relaxation Labelling, Affine Invariant." @default.
- W9859618 created "2016-06-24" @default.
- W9859618 creator A5066033331 @default.
- W9859618 date "2003-01-01" @default.
- W9859618 modified "2023-09-24" @default.
- W9859618 title "Object recognition by region matching using relaxation with relational constraints." @default.
- W9859618 hasPublicationYear "2003" @default.
- W9859618 type Work @default.
- W9859618 sameAs 9859618 @default.
- W9859618 citedByCount "3" @default.
- W9859618 crossrefType "dissertation" @default.
- W9859618 hasAuthorship W9859618A5066033331 @default.
- W9859618 hasConcept C105795698 @default.
- W9859618 hasConcept C153180895 @default.
- W9859618 hasConcept C154945302 @default.
- W9859618 hasConcept C160633673 @default.
- W9859618 hasConcept C165064840 @default.
- W9859618 hasConcept C190470478 @default.
- W9859618 hasConcept C202444582 @default.
- W9859618 hasConcept C31972630 @default.
- W9859618 hasConcept C33923547 @default.
- W9859618 hasConcept C37914503 @default.
- W9859618 hasConcept C41008148 @default.
- W9859618 hasConcept C52622490 @default.
- W9859618 hasConcept C61265191 @default.
- W9859618 hasConcept C64876066 @default.
- W9859618 hasConcept C92757383 @default.
- W9859618 hasConcept C97931131 @default.
- W9859618 hasConceptScore W9859618C105795698 @default.
- W9859618 hasConceptScore W9859618C153180895 @default.
- W9859618 hasConceptScore W9859618C154945302 @default.
- W9859618 hasConceptScore W9859618C160633673 @default.
- W9859618 hasConceptScore W9859618C165064840 @default.
- W9859618 hasConceptScore W9859618C190470478 @default.
- W9859618 hasConceptScore W9859618C202444582 @default.
- W9859618 hasConceptScore W9859618C31972630 @default.
- W9859618 hasConceptScore W9859618C33923547 @default.
- W9859618 hasConceptScore W9859618C37914503 @default.
- W9859618 hasConceptScore W9859618C41008148 @default.
- W9859618 hasConceptScore W9859618C52622490 @default.
- W9859618 hasConceptScore W9859618C61265191 @default.
- W9859618 hasConceptScore W9859618C64876066 @default.
- W9859618 hasConceptScore W9859618C92757383 @default.
- W9859618 hasConceptScore W9859618C97931131 @default.
- W9859618 hasLocation W98596181 @default.
- W9859618 hasOpenAccess W9859618 @default.
- W9859618 hasPrimaryLocation W98596181 @default.
- W9859618 hasRelatedWork W1439992645 @default.
- W9859618 hasRelatedWork W1503134807 @default.
- W9859618 hasRelatedWork W1573472869 @default.
- W9859618 hasRelatedWork W176247164 @default.
- W9859618 hasRelatedWork W1842585307 @default.
- W9859618 hasRelatedWork W1965819377 @default.
- W9859618 hasRelatedWork W203273314 @default.
- W9859618 hasRelatedWork W2182443753 @default.
- W9859618 hasRelatedWork W2256468674 @default.
- W9859618 hasRelatedWork W2371120176 @default.
- W9859618 hasRelatedWork W2536624286 @default.
- W9859618 hasRelatedWork W2741827214 @default.
- W9859618 hasRelatedWork W2750892652 @default.
- W9859618 hasRelatedWork W2754396231 @default.
- W9859618 hasRelatedWork W2774533369 @default.
- W9859618 hasRelatedWork W2790710581 @default.
- W9859618 hasRelatedWork W2968004941 @default.
- W9859618 hasRelatedWork W3134199935 @default.
- W9859618 hasRelatedWork W3144329708 @default.
- W9859618 hasRelatedWork W597863343 @default.
- W9859618 isParatext "false" @default.
- W9859618 isRetracted "false" @default.
- W9859618 magId "9859618" @default.
- W9859618 workType "dissertation" @default.