Matches in SemOpenAlex for { <https://semopenalex.org/work/W986100872> ?p ?o ?g. }
- W986100872 endingPage "8730" @default.
- W986100872 startingPage "8707" @default.
- W986100872 abstract "Cuckoo search based multi-level thresholding is presented by maximizing the Tsallis entropy.Different optimization algorithms are exploited with Tsallis entropy method.Cuckoo based Tsallis entropy was found to be more accurate for colored satellite image segmentation.The feasibility of the proposed approach has been tested on 10 different colored satellite images. In this paper, a new technique for color image segmentation using CS algorithm supported by Tsallis entropy for multilevel thresholding has been proposed toward the effective colored segmentation of satellite images. The nonextensive entropy is a new expansion in statistical mechanics, and it is a recent formalism in which a real quantity q was introduced as parameter for physical systems that presents the long range interactions, long time memories and fractal-type structures. The feasibility of the proposed cuckoo search and Tsallis entropy based approach was tested on 10 different satellite images and benchmarked with differential evolution, wind driven optimization, particle swarm optimization and artificial bee colony algorithm for solving the multilevel colored image thresholding problems. Experiments have been conducted on a variety of satellite images. Several measurements are used to evaluate the performance of proposed method which clearly illustrates the effectiveness and robustness of the proposed algorithm. The experimental results qualitative and quantitative both demonstrate that the proposed method selects the threshold values effectively and properly." @default.
- W986100872 created "2016-06-24" @default.
- W986100872 creator A5048256790 @default.
- W986100872 creator A5055377819 @default.
- W986100872 creator A5066467382 @default.
- W986100872 date "2015-12-01" @default.
- W986100872 modified "2023-10-14" @default.
- W986100872 title "Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms" @default.
- W986100872 cites W1595159159 @default.
- W986100872 cites W1969351979 @default.
- W986100872 cites W1983710474 @default.
- W986100872 cites W1984060448 @default.
- W986100872 cites W1984207302 @default.
- W986100872 cites W1985312994 @default.
- W986100872 cites W1987087490 @default.
- W986100872 cites W1991224261 @default.
- W986100872 cites W1991927948 @default.
- W986100872 cites W1993150044 @default.
- W986100872 cites W1996248842 @default.
- W986100872 cites W1997065995 @default.
- W986100872 cites W2002254083 @default.
- W986100872 cites W2002870654 @default.
- W986100872 cites W2003012800 @default.
- W986100872 cites W2006010966 @default.
- W986100872 cites W2017168629 @default.
- W986100872 cites W2019666355 @default.
- W986100872 cites W2021422668 @default.
- W986100872 cites W2022411568 @default.
- W986100872 cites W2024746652 @default.
- W986100872 cites W2030161124 @default.
- W986100872 cites W2036528686 @default.
- W986100872 cites W2037031008 @default.
- W986100872 cites W2047681034 @default.
- W986100872 cites W2050787737 @default.
- W986100872 cites W2054097208 @default.
- W986100872 cites W2054131729 @default.
- W986100872 cites W2058772068 @default.
- W986100872 cites W2060632169 @default.
- W986100872 cites W2065438605 @default.
- W986100872 cites W2067715705 @default.
- W986100872 cites W2067943751 @default.
- W986100872 cites W2071469153 @default.
- W986100872 cites W2077713771 @default.
- W986100872 cites W2079595223 @default.
- W986100872 cites W2081087548 @default.
- W986100872 cites W2081200191 @default.
- W986100872 cites W2081784348 @default.
- W986100872 cites W2083970667 @default.
- W986100872 cites W2086437745 @default.
- W986100872 cites W2089045143 @default.
- W986100872 cites W2089963011 @default.
- W986100872 cites W2092340766 @default.
- W986100872 cites W2095379941 @default.
- W986100872 cites W2096586041 @default.
- W986100872 cites W2099452537 @default.
- W986100872 cites W2104447397 @default.
- W986100872 cites W2120627761 @default.
- W986100872 cites W2121766492 @default.
- W986100872 cites W2132384529 @default.
- W986100872 cites W2133059825 @default.
- W986100872 cites W2143001780 @default.
- W986100872 cites W2151939106 @default.
- W986100872 cites W2155765190 @default.
- W986100872 cites W2157259291 @default.
- W986100872 cites W2164168162 @default.
- W986100872 cites W2170741744 @default.
- W986100872 cites W2543580944 @default.
- W986100872 cites W1998843893 @default.
- W986100872 doi "https://doi.org/10.1016/j.eswa.2015.07.025" @default.
- W986100872 hasPublicationYear "2015" @default.
- W986100872 type Work @default.
- W986100872 sameAs 986100872 @default.
- W986100872 citedByCount "161" @default.
- W986100872 countsByYear W9861008722016 @default.
- W986100872 countsByYear W9861008722017 @default.
- W986100872 countsByYear W9861008722018 @default.
- W986100872 countsByYear W9861008722019 @default.
- W986100872 countsByYear W9861008722020 @default.
- W986100872 countsByYear W9861008722021 @default.
- W986100872 countsByYear W9861008722022 @default.
- W986100872 countsByYear W9861008722023 @default.
- W986100872 crossrefType "journal-article" @default.
- W986100872 hasAuthorship W986100872A5048256790 @default.
- W986100872 hasAuthorship W986100872A5055377819 @default.
- W986100872 hasAuthorship W986100872A5066467382 @default.
- W986100872 hasConcept C106301342 @default.
- W986100872 hasConcept C11413529 @default.
- W986100872 hasConcept C115961682 @default.
- W986100872 hasConcept C117521176 @default.
- W986100872 hasConcept C121332964 @default.
- W986100872 hasConcept C124504099 @default.
- W986100872 hasConcept C153180895 @default.
- W986100872 hasConcept C154945302 @default.
- W986100872 hasConcept C159985019 @default.
- W986100872 hasConcept C191178318 @default.
- W986100872 hasConcept C192562407 @default.
- W986100872 hasConcept C2778307483 @default.
- W986100872 hasConcept C31972630 @default.