Matches in SemOpenAlex for { <https://semopenalex.org/work/W986585644> ?p ?o ?g. }
- W986585644 abstract "We consider the task of pixel-wise semantic segmentation given a small set of labeled training images. Among two of the most popular techniques to address this task are Random Forests (RF) and Neural Networks (NN). The main contribution of this work is to explore the relationship between two special forms of these techniques: stacked RFs and deep Convolutional Neural Networks (CNN). We show that there exists a mapping from stacked RF to deep CNN, and an approximate mapping back. This insight gives two major practical benefits: Firstly, deep CNNs can be intelligently constructed and initialized, which is crucial when dealing with a limited amount of training data. Secondly, it can be utilized to create a new stacked RF with improved performance. Furthermore, this mapping yields a new CNN architecture, that is well suited for pixel-wise semantic labeling. We experimentally verify these practical benefits for two different application scenarios in computer vision and biology, where the layout of parts is important: Kinect-based body part labeling from depth images, and somite segmentation in microscopy images of developing zebrafish." @default.
- W986585644 created "2016-06-24" @default.
- W986585644 creator A5007026352 @default.
- W986585644 creator A5014321482 @default.
- W986585644 creator A5034290170 @default.
- W986585644 creator A5050629823 @default.
- W986585644 creator A5068657716 @default.
- W986585644 date "2015-07-27" @default.
- W986585644 modified "2023-09-27" @default.
- W986585644 title "Relating Cascaded Random Forests to Deep Convolutional Neural Networks for Semantic Segmentation" @default.
- W986585644 cites W104184427 @default.
- W986585644 cites W137456267 @default.
- W986585644 cites W1901129140 @default.
- W986585644 cites W1903029394 @default.
- W986585644 cites W1910657905 @default.
- W986585644 cites W1935978687 @default.
- W986585644 cites W1955857676 @default.
- W986585644 cites W1960289438 @default.
- W986585644 cites W1966347487 @default.
- W986585644 cites W2010787672 @default.
- W986585644 cites W2059424674 @default.
- W986585644 cites W2081136789 @default.
- W986585644 cites W2100588357 @default.
- W986585644 cites W2102605133 @default.
- W986585644 cites W2104266970 @default.
- W986585644 cites W2109779438 @default.
- W986585644 cites W2117539524 @default.
- W986585644 cites W2129259959 @default.
- W986585644 cites W2136922672 @default.
- W986585644 cites W2139427956 @default.
- W986585644 cites W2145287260 @default.
- W986585644 cites W2148349024 @default.
- W986585644 cites W2158778629 @default.
- W986585644 cites W2162741153 @default.
- W986585644 cites W2172156083 @default.
- W986585644 cites W2184852195 @default.
- W986585644 cites W2271856571 @default.
- W986585644 cites W2344856335 @default.
- W986585644 cites W2612254140 @default.
- W986585644 cites W2613547692 @default.
- W986585644 cites W2613718673 @default.
- W986585644 cites W2911964244 @default.
- W986585644 cites W2949117887 @default.
- W986585644 cites W2949588583 @default.
- W986585644 cites W2950967261 @default.
- W986585644 cites W2951650375 @default.
- W986585644 cites W2963840672 @default.
- W986585644 cites W2964288706 @default.
- W986585644 cites W3105463831 @default.
- W986585644 hasPublicationYear "2015" @default.
- W986585644 type Work @default.
- W986585644 sameAs 986585644 @default.
- W986585644 citedByCount "14" @default.
- W986585644 countsByYear W9865856442015 @default.
- W986585644 countsByYear W9865856442016 @default.
- W986585644 countsByYear W9865856442017 @default.
- W986585644 countsByYear W9865856442018 @default.
- W986585644 countsByYear W9865856442019 @default.
- W986585644 countsByYear W9865856442020 @default.
- W986585644 crossrefType "posted-content" @default.
- W986585644 hasAuthorship W986585644A5007026352 @default.
- W986585644 hasAuthorship W986585644A5014321482 @default.
- W986585644 hasAuthorship W986585644A5034290170 @default.
- W986585644 hasAuthorship W986585644A5050629823 @default.
- W986585644 hasAuthorship W986585644A5068657716 @default.
- W986585644 hasConcept C108583219 @default.
- W986585644 hasConcept C119857082 @default.
- W986585644 hasConcept C153180895 @default.
- W986585644 hasConcept C154945302 @default.
- W986585644 hasConcept C160633673 @default.
- W986585644 hasConcept C162324750 @default.
- W986585644 hasConcept C169258074 @default.
- W986585644 hasConcept C177264268 @default.
- W986585644 hasConcept C187736073 @default.
- W986585644 hasConcept C199360897 @default.
- W986585644 hasConcept C2780451532 @default.
- W986585644 hasConcept C2984842247 @default.
- W986585644 hasConcept C41008148 @default.
- W986585644 hasConcept C81363708 @default.
- W986585644 hasConcept C89600930 @default.
- W986585644 hasConceptScore W986585644C108583219 @default.
- W986585644 hasConceptScore W986585644C119857082 @default.
- W986585644 hasConceptScore W986585644C153180895 @default.
- W986585644 hasConceptScore W986585644C154945302 @default.
- W986585644 hasConceptScore W986585644C160633673 @default.
- W986585644 hasConceptScore W986585644C162324750 @default.
- W986585644 hasConceptScore W986585644C169258074 @default.
- W986585644 hasConceptScore W986585644C177264268 @default.
- W986585644 hasConceptScore W986585644C187736073 @default.
- W986585644 hasConceptScore W986585644C199360897 @default.
- W986585644 hasConceptScore W986585644C2780451532 @default.
- W986585644 hasConceptScore W986585644C2984842247 @default.
- W986585644 hasConceptScore W986585644C41008148 @default.
- W986585644 hasConceptScore W986585644C81363708 @default.
- W986585644 hasConceptScore W986585644C89600930 @default.
- W986585644 hasLocation W9865856441 @default.
- W986585644 hasOpenAccess W986585644 @default.
- W986585644 hasPrimaryLocation W9865856441 @default.
- W986585644 hasRelatedWork W13188192 @default.
- W986585644 hasRelatedWork W1903029394 @default.