Matches in SemOpenAlex for { <https://semopenalex.org/work/W987144911> ?p ?o ?g. }
- W987144911 endingPage "656" @default.
- W987144911 startingPage "619" @default.
- W987144911 abstract "SUMMARY We consider hierarchical generalized linear models which allow extra error components in the linear predictors of generalized linear models. The distribution of these components is not restricted to be normal; this allows a broader class of models, which includes generalized linear mixed models. We use a generalization of Henderson's joint likelihood, called a hierarchical or h ‐likelihood, for inferences from hierarchical generalized linear models. This avoids the integration that is necessary when marginal likelihood is used. Under appropriate conditions maximizing the h ‐likelihood gives fixed effect estimators that are asymptotically equivalent to those obtained from the use of marginal likelihood; at the same time we obtain the random effect estimates that are asymptotically best unbiased predictors. An adjusted profile h ‐likelihood is shown to give the required generalization of restricted maximum likelihood for the estimation of dispersion components. A scaled deviance test for the goodness of fit, a model selection criterion for choosing between various dispersion models and a graphical method for checking the distributional assumption of random effects are proposed. The ideas of quasi‐likelihood and extended quasi‐likelihood are generalized to the new class. We give examples of the Poisson–gamma, binomial–beta and gamma–inverse gamma hierarchical generalized linear models. A resolution is proposed for the apparent difference between population‐averaged and subject‐specific models. A unified framework is provided for viewing and extending many existing methods." @default.
- W987144911 created "2016-06-24" @default.
- W987144911 creator A5032751929 @default.
- W987144911 creator A5087496662 @default.
- W987144911 date "1996-11-01" @default.
- W987144911 modified "2023-10-14" @default.
- W987144911 title "Hierarchical Generalized Linear Models" @default.
- W987144911 cites W134080029 @default.
- W987144911 cites W1603339577 @default.
- W987144911 cites W1968578768 @default.
- W987144911 cites W1976566530 @default.
- W987144911 cites W1982585616 @default.
- W987144911 cites W1997003198 @default.
- W987144911 cites W1997318672 @default.
- W987144911 cites W1997407470 @default.
- W987144911 cites W2000084758 @default.
- W987144911 cites W2001156082 @default.
- W987144911 cites W2017696952 @default.
- W987144911 cites W2024085858 @default.
- W987144911 cites W2025071037 @default.
- W987144911 cites W2029732328 @default.
- W987144911 cites W2063590966 @default.
- W987144911 cites W2063830806 @default.
- W987144911 cites W2065745947 @default.
- W987144911 cites W2089887873 @default.
- W987144911 cites W2091215515 @default.
- W987144911 cites W2094944276 @default.
- W987144911 cites W2116366840 @default.
- W987144911 cites W2128026987 @default.
- W987144911 cites W2325014228 @default.
- W987144911 cites W2327060770 @default.
- W987144911 cites W2327954903 @default.
- W987144911 cites W2523035108 @default.
- W987144911 cites W2801490189 @default.
- W987144911 cites W4206653471 @default.
- W987144911 cites W4210332662 @default.
- W987144911 cites W4240874411 @default.
- W987144911 cites W4244611409 @default.
- W987144911 cites W4293258550 @default.
- W987144911 cites W4301861531 @default.
- W987144911 doi "https://doi.org/10.1111/j.2517-6161.1996.tb02105.x" @default.
- W987144911 hasPublicationYear "1996" @default.
- W987144911 type Work @default.
- W987144911 sameAs 987144911 @default.
- W987144911 citedByCount "309" @default.
- W987144911 countsByYear W9871449112012 @default.
- W987144911 countsByYear W9871449112013 @default.
- W987144911 countsByYear W9871449112014 @default.
- W987144911 countsByYear W9871449112015 @default.
- W987144911 countsByYear W9871449112016 @default.
- W987144911 countsByYear W9871449112017 @default.
- W987144911 countsByYear W9871449112018 @default.
- W987144911 countsByYear W9871449112019 @default.
- W987144911 countsByYear W9871449112020 @default.
- W987144911 countsByYear W9871449112021 @default.
- W987144911 countsByYear W9871449112022 @default.
- W987144911 countsByYear W9871449112023 @default.
- W987144911 crossrefType "journal-article" @default.
- W987144911 hasAuthorship W987144911A5032751929 @default.
- W987144911 hasAuthorship W987144911A5087496662 @default.
- W987144911 hasConcept C100906024 @default.
- W987144911 hasConcept C105795698 @default.
- W987144911 hasConcept C126322002 @default.
- W987144911 hasConcept C134306372 @default.
- W987144911 hasConcept C142967376 @default.
- W987144911 hasConcept C152877465 @default.
- W987144911 hasConcept C153720581 @default.
- W987144911 hasConcept C163175372 @default.
- W987144911 hasConcept C167928553 @default.
- W987144911 hasConcept C168743327 @default.
- W987144911 hasConcept C177148314 @default.
- W987144911 hasConcept C177599991 @default.
- W987144911 hasConcept C189559763 @default.
- W987144911 hasConcept C197656967 @default.
- W987144911 hasConcept C199335787 @default.
- W987144911 hasConcept C26359558 @default.
- W987144911 hasConcept C28826006 @default.
- W987144911 hasConcept C33923547 @default.
- W987144911 hasConcept C41587187 @default.
- W987144911 hasConcept C49781872 @default.
- W987144911 hasConcept C71924100 @default.
- W987144911 hasConcept C89106044 @default.
- W987144911 hasConcept C91025261 @default.
- W987144911 hasConcept C93959086 @default.
- W987144911 hasConcept C9483764 @default.
- W987144911 hasConcept C95190672 @default.
- W987144911 hasConcept C95923904 @default.
- W987144911 hasConceptScore W987144911C100906024 @default.
- W987144911 hasConceptScore W987144911C105795698 @default.
- W987144911 hasConceptScore W987144911C126322002 @default.
- W987144911 hasConceptScore W987144911C134306372 @default.
- W987144911 hasConceptScore W987144911C142967376 @default.
- W987144911 hasConceptScore W987144911C152877465 @default.
- W987144911 hasConceptScore W987144911C153720581 @default.
- W987144911 hasConceptScore W987144911C163175372 @default.
- W987144911 hasConceptScore W987144911C167928553 @default.
- W987144911 hasConceptScore W987144911C168743327 @default.
- W987144911 hasConceptScore W987144911C177148314 @default.