Matches in SemOpenAlex for { <https://semopenalex.org/work/W98981703> ?p ?o ?g. }
- W98981703 abstract "It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term- based ones in describing user preferences, but many experiments do not support this hypothesis. This research presents a promising method, Relevance Feature Discovery (RFD), for solving this challenging issue. It discovers both positive and negative patterns in text documents as high-level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the high-level features. The thesis also introduces an adaptive model (called ARFD) to enhance the exibility of using RFD in adaptive environment. ARFD automatically updates the system's knowledge based on a sliding window over new incoming feedback documents. It can efficiently decide which incoming documents can bring in new knowledge into the system. Substantial experiments using the proposed models on Reuters Corpus Volume 1 and TREC topics show that the proposed models significantly outperform both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and other pattern-based methods." @default.
- W98981703 created "2016-06-24" @default.
- W98981703 creator A5062081377 @default.
- W98981703 date "2011-01-01" @default.
- W98981703 modified "2023-09-25" @default.
- W98981703 title "Relevance feature discovery for text analysis" @default.
- W98981703 cites W123065550 @default.
- W98981703 cites W1515087027 @default.
- W98981703 cites W1523969031 @default.
- W98981703 cites W1532325895 @default.
- W98981703 cites W1593249691 @default.
- W98981703 cites W1598935688 @default.
- W98981703 cites W1599537342 @default.
- W98981703 cites W1660390307 @default.
- W98981703 cites W1676985236 @default.
- W98981703 cites W1810133334 @default.
- W98981703 cites W1813925448 @default.
- W98981703 cites W1970945111 @default.
- W98981703 cites W1978394996 @default.
- W98981703 cites W1988931981 @default.
- W98981703 cites W2000672666 @default.
- W98981703 cites W2000918452 @default.
- W98981703 cites W2006961223 @default.
- W98981703 cites W2008889224 @default.
- W98981703 cites W2011727889 @default.
- W98981703 cites W2033626294 @default.
- W98981703 cites W2043909051 @default.
- W98981703 cites W2058616517 @default.
- W98981703 cites W2064853889 @default.
- W98981703 cites W2067849797 @default.
- W98981703 cites W2068383400 @default.
- W98981703 cites W2068863058 @default.
- W98981703 cites W2070620842 @default.
- W98981703 cites W2077019270 @default.
- W98981703 cites W2083021953 @default.
- W98981703 cites W2093390569 @default.
- W98981703 cites W2093456341 @default.
- W98981703 cites W2096152098 @default.
- W98981703 cites W2098766443 @default.
- W98981703 cites W2100438118 @default.
- W98981703 cites W2101589718 @default.
- W98981703 cites W2104049510 @default.
- W98981703 cites W2110441834 @default.
- W98981703 cites W2110822809 @default.
- W98981703 cites W2114535528 @default.
- W98981703 cites W2116029313 @default.
- W98981703 cites W2118020653 @default.
- W98981703 cites W2123203354 @default.
- W98981703 cites W2124549482 @default.
- W98981703 cites W2126502509 @default.
- W98981703 cites W2127452535 @default.
- W98981703 cites W2128833260 @default.
- W98981703 cites W2136251160 @default.
- W98981703 cites W2136583886 @default.
- W98981703 cites W2137494120 @default.
- W98981703 cites W2140190241 @default.
- W98981703 cites W2145749942 @default.
- W98981703 cites W2148212498 @default.
- W98981703 cites W2148815118 @default.
- W98981703 cites W2150102617 @default.
- W98981703 cites W2153252192 @default.
- W98981703 cites W2155516811 @default.
- W98981703 cites W2158454296 @default.
- W98981703 cites W2160245644 @default.
- W98981703 cites W2164547069 @default.
- W98981703 cites W2166026295 @default.
- W98981703 cites W2166456723 @default.
- W98981703 cites W2169213601 @default.
- W98981703 cites W2185703560 @default.
- W98981703 cites W22461475 @default.
- W98981703 cites W2421105961 @default.
- W98981703 cites W2519011775 @default.
- W98981703 cites W2917578068 @default.
- W98981703 cites W3162432898 @default.
- W98981703 cites W33298224 @default.
- W98981703 cites W63370117 @default.
- W98981703 hasPublicationYear "2011" @default.
- W98981703 type Work @default.
- W98981703 sameAs 98981703 @default.
- W98981703 citedByCount "3" @default.
- W98981703 countsByYear W989817032013 @default.
- W98981703 countsByYear W989817032015 @default.
- W98981703 countsByYear W989817032020 @default.
- W98981703 crossrefType "dissertation" @default.
- W98981703 hasAuthorship W98981703A5062081377 @default.
- W98981703 hasConcept C102392041 @default.
- W98981703 hasConcept C115961682 @default.
- W98981703 hasConcept C121332964 @default.
- W98981703 hasConcept C124101348 @default.
- W98981703 hasConcept C136764020 @default.
- W98981703 hasConcept C138885662 @default.
- W98981703 hasConcept C154945302 @default.
- W98981703 hasConcept C158154518 @default.
- W98981703 hasConcept C1667742 @default.
- W98981703 hasConcept C17744445 @default.
- W98981703 hasConcept C199539241 @default.
- W98981703 hasConcept C204321447 @default.
- W98981703 hasConcept C23123220 @default.
- W98981703 hasConcept C2776401178 @default.
- W98981703 hasConcept C2778751112 @default.