Matches in SemOpenAlex for { <https://semopenalex.org/work/W99247485> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W99247485 abstract "A well known classification method is the k-Nearest Neighbors (k-NN) classifier. However, sequentially searching for the nearest neighbors in large datasets downgrades its performance because of the high computational cost involved. This paper proposes a cluster-based classification model for speeding up the k-NN classifier. The model aims to reduce the cost as much as possible and to maintain the classification accuracy at a high level. It consists of a simple data structure and a hybrid, adaptive algorithm that accesses this structure. Initially, a preprocessing clustering procedure builds the data structure. Then, the proposed algorithm, based on user-defined acceptance criteria, attempts to classify an incoming item using the nearest cluster centroids. Upon failure, the incoming item is classified by searching for the k nearest neighbors within specific clusters. The proposed approach was tested on five real life datasets. The results show that it can be used either to achieve a high accuracy with gains in cost or to reduce the cost at a minimum level with slightly lower accuracy." @default.
- W99247485 created "2016-06-24" @default.
- W99247485 creator A5032970498 @default.
- W99247485 creator A5043003448 @default.
- W99247485 creator A5089769845 @default.
- W99247485 date "2012-01-01" @default.
- W99247485 modified "2023-09-26" @default.
- W99247485 title "An Adaptive Hybrid and Cluster-Based Model for Speeding Up the k-NN Classifier" @default.
- W99247485 cites W1522251376 @default.
- W99247485 cites W1827240780 @default.
- W99247485 cites W1967001541 @default.
- W99247485 cites W1994410331 @default.
- W99247485 cites W2014403077 @default.
- W99247485 cites W2068514419 @default.
- W99247485 cites W2092617083 @default.
- W99247485 cites W2107686700 @default.
- W99247485 cites W2117688906 @default.
- W99247485 cites W2122496402 @default.
- W99247485 doi "https://doi.org/10.1007/978-3-642-28931-6_16" @default.
- W99247485 hasPublicationYear "2012" @default.
- W99247485 type Work @default.
- W99247485 sameAs 99247485 @default.
- W99247485 citedByCount "3" @default.
- W99247485 countsByYear W992474852012 @default.
- W99247485 countsByYear W992474852013 @default.
- W99247485 countsByYear W992474852014 @default.
- W99247485 crossrefType "book-chapter" @default.
- W99247485 hasAuthorship W99247485A5032970498 @default.
- W99247485 hasAuthorship W99247485A5043003448 @default.
- W99247485 hasAuthorship W99247485A5089769845 @default.
- W99247485 hasConcept C110083411 @default.
- W99247485 hasConcept C113238511 @default.
- W99247485 hasConcept C119857082 @default.
- W99247485 hasConcept C124101348 @default.
- W99247485 hasConcept C146599234 @default.
- W99247485 hasConcept C153180895 @default.
- W99247485 hasConcept C154945302 @default.
- W99247485 hasConcept C207968372 @default.
- W99247485 hasConcept C34736171 @default.
- W99247485 hasConcept C41008148 @default.
- W99247485 hasConcept C73555534 @default.
- W99247485 hasConcept C95623464 @default.
- W99247485 hasConceptScore W99247485C110083411 @default.
- W99247485 hasConceptScore W99247485C113238511 @default.
- W99247485 hasConceptScore W99247485C119857082 @default.
- W99247485 hasConceptScore W99247485C124101348 @default.
- W99247485 hasConceptScore W99247485C146599234 @default.
- W99247485 hasConceptScore W99247485C153180895 @default.
- W99247485 hasConceptScore W99247485C154945302 @default.
- W99247485 hasConceptScore W99247485C207968372 @default.
- W99247485 hasConceptScore W99247485C34736171 @default.
- W99247485 hasConceptScore W99247485C41008148 @default.
- W99247485 hasConceptScore W99247485C73555534 @default.
- W99247485 hasConceptScore W99247485C95623464 @default.
- W99247485 hasLocation W992474851 @default.
- W99247485 hasOpenAccess W99247485 @default.
- W99247485 hasPrimaryLocation W992474851 @default.
- W99247485 hasRelatedWork W1530059074 @default.
- W99247485 hasRelatedWork W1963482578 @default.
- W99247485 hasRelatedWork W1997461632 @default.
- W99247485 hasRelatedWork W2004656598 @default.
- W99247485 hasRelatedWork W2018951779 @default.
- W99247485 hasRelatedWork W2058113481 @default.
- W99247485 hasRelatedWork W2119513921 @default.
- W99247485 hasRelatedWork W2156122572 @default.
- W99247485 hasRelatedWork W2293319489 @default.
- W99247485 hasRelatedWork W2295132101 @default.
- W99247485 hasRelatedWork W2466560649 @default.
- W99247485 hasRelatedWork W2580072555 @default.
- W99247485 hasRelatedWork W2771435609 @default.
- W99247485 hasRelatedWork W2892052315 @default.
- W99247485 hasRelatedWork W2902154084 @default.
- W99247485 hasRelatedWork W2963569949 @default.
- W99247485 hasRelatedWork W3006986403 @default.
- W99247485 hasRelatedWork W3028259683 @default.
- W99247485 hasRelatedWork W53279664 @default.
- W99247485 hasRelatedWork W84488706 @default.
- W99247485 isParatext "false" @default.
- W99247485 isRetracted "false" @default.
- W99247485 magId "99247485" @default.
- W99247485 workType "book-chapter" @default.