Matches in SemOpenAlex for { <https://semopenalex.org/work/W993676940> ?p ?o ?g. }
- W993676940 endingPage "249" @default.
- W993676940 startingPage "148" @default.
- W993676940 abstract "This chapter discusses small-angle scattering experiments with particles in solution—i.e., the particles are nonoriented. A large number of particles contribute to the scattering and the resulting spatial average leads to a loss in information. The information contained in the three-dimensional electron density distribution is thereby reduced to the one-dimensional distance distribution function. This function is proportional to the number of lines with length, which connect any volume element i with any volume element k of the same particle. The spatial orientation of these connection lines is of no account to the function. The connection lines are weighted by the product of the number of electrons situated in the volume elements i and k, respectively. The correlation between the function and the structure of the particle is also discussed in the chapter. The connection between the distance distribution function and the measured experimental scattering curve is also shown. It is observed that the each distance between two electrons of the particle, which is part of the function, leads to an angular-dependent scattering intensity. This physical process of scattering can be mathematically expressed by a Fourier transformation, which defines the way in which the information in “real space” (distance distribution function) is transformed into “reciprocal space” (scattering function). The chapter also discusses monochromatization and the camera type developed in Graz." @default.
- W993676940 created "2016-06-24" @default.
- W993676940 creator A5020025361 @default.
- W993676940 creator A5020752164 @default.
- W993676940 creator A5075242192 @default.
- W993676940 date "1979-01-01" @default.
- W993676940 modified "2023-10-06" @default.
- W993676940 title "[11] Small-angle x-ray scattering" @default.
- W993676940 cites W12635020 @default.
- W993676940 cites W1493599739 @default.
- W993676940 cites W1501888630 @default.
- W993676940 cites W1547714209 @default.
- W993676940 cites W1763189920 @default.
- W993676940 cites W181023529 @default.
- W993676940 cites W1964706046 @default.
- W993676940 cites W1964952673 @default.
- W993676940 cites W1967483358 @default.
- W993676940 cites W1972435070 @default.
- W993676940 cites W1972827264 @default.
- W993676940 cites W1976517925 @default.
- W993676940 cites W1978059243 @default.
- W993676940 cites W1978241531 @default.
- W993676940 cites W1980283911 @default.
- W993676940 cites W1982073880 @default.
- W993676940 cites W1985221531 @default.
- W993676940 cites W1987440865 @default.
- W993676940 cites W1988127839 @default.
- W993676940 cites W1988493739 @default.
- W993676940 cites W1989959109 @default.
- W993676940 cites W1990169371 @default.
- W993676940 cites W1992865540 @default.
- W993676940 cites W1996545090 @default.
- W993676940 cites W1997314300 @default.
- W993676940 cites W1997472565 @default.
- W993676940 cites W1998831682 @default.
- W993676940 cites W1999168088 @default.
- W993676940 cites W2004315481 @default.
- W993676940 cites W2010271676 @default.
- W993676940 cites W2013272782 @default.
- W993676940 cites W2015611919 @default.
- W993676940 cites W2015780708 @default.
- W993676940 cites W2017270157 @default.
- W993676940 cites W2023415853 @default.
- W993676940 cites W2025500984 @default.
- W993676940 cites W2028930364 @default.
- W993676940 cites W2032416322 @default.
- W993676940 cites W2032510626 @default.
- W993676940 cites W2037393895 @default.
- W993676940 cites W2039096198 @default.
- W993676940 cites W2040170178 @default.
- W993676940 cites W2041900757 @default.
- W993676940 cites W2044388156 @default.
- W993676940 cites W2044489099 @default.
- W993676940 cites W2045201589 @default.
- W993676940 cites W2045279420 @default.
- W993676940 cites W2050229442 @default.
- W993676940 cites W2050277650 @default.
- W993676940 cites W2053171520 @default.
- W993676940 cites W2058897678 @default.
- W993676940 cites W2059576858 @default.
- W993676940 cites W2062810146 @default.
- W993676940 cites W2063649892 @default.
- W993676940 cites W2065545155 @default.
- W993676940 cites W2067055481 @default.
- W993676940 cites W2067951160 @default.
- W993676940 cites W2069577110 @default.
- W993676940 cites W2070390920 @default.
- W993676940 cites W2071607169 @default.
- W993676940 cites W2072739626 @default.
- W993676940 cites W2075124766 @default.
- W993676940 cites W2078560197 @default.
- W993676940 cites W2090623137 @default.
- W993676940 cites W2092724816 @default.
- W993676940 cites W2094253502 @default.
- W993676940 cites W2105643924 @default.
- W993676940 cites W2113066346 @default.
- W993676940 cites W2128925528 @default.
- W993676940 cites W2132819289 @default.
- W993676940 cites W2139200676 @default.
- W993676940 cites W2316505989 @default.
- W993676940 cites W2320474626 @default.
- W993676940 cites W2323249948 @default.
- W993676940 cites W2332798649 @default.
- W993676940 cites W2472509482 @default.
- W993676940 cites W25553193 @default.
- W993676940 cites W2797997894 @default.
- W993676940 cites W2799359958 @default.
- W993676940 cites W2918218886 @default.
- W993676940 cites W295343529 @default.
- W993676940 cites W3205645103 @default.
- W993676940 cites W4233064284 @default.
- W993676940 cites W4241156100 @default.
- W993676940 cites W4242067997 @default.
- W993676940 cites W4254467550 @default.
- W993676940 cites W4319053987 @default.
- W993676940 cites W4322696157 @default.
- W993676940 doi "https://doi.org/10.1016/0076-6879(79)61013-3" @default.
- W993676940 hasPublicationYear "1979" @default.