Matches in SemOpenAlex for { <https://semopenalex.org/work/W993695213> ?p ?o ?g. }
- W993695213 abstract "Author(s): Qiu, Jiaheng | Advisor(s): Wong, Weng Kee | Abstract: The theory of optimal experimental design provides insightful guidance on resource allocation for many dose-response studies and clinical trials. However, as more and more complicated models are developed, finding optimal designs has become an increasingly difficult task; therefore, the availability of an efficient and easy-to-use algorithm to find optimal designs is important for both researchers and practitioners. In recent years, nature-inspired algorithms like Particle Swarm Optimization(PSO) have been successfully applied to many non-statistical disciplines, such as computer science and engineering, even though there is no unified theory to explain why PSO works so well. To date, there is virtually no work in the mainstream statistical literature that applies PSO to solve statistical problems.In my dissertation, I review PSO methodology and show it is an easy and effective algorithm to generate locally D- and c-optimal designs for a variety of nonlinear statistical models commonly used in biomedical studies. I develop a new version of PSO called Ultra-dimensional PSO (UPSO) to find D-optimal designs for multi-variable exponential and Poisson regression models with up to five variables and all pairwise interactions. I use the proposed novel search strategy to find minimally supported D-optimal designs and ascertain conditions under which such optimal designs exist for such models. A remarkable discovery in my work is that locally D-optimal designs for such models can have many more support points than the number of parameters in the model. This result is both new and interesting because almost all D-optimal designs have equal or just one or two more number of points than the the number of parameters in the mean response function, see the examples in monographs by Fedorov [1972], Atkinson Atkinson et al. [2007], and recent papers by in Yang and Stufken [2009], Yang [2010]. This discovery also disproves the conjecture by Wang et al. [2006] that for M-variable interaction model (M g 2), D-optimal designs are also minimally and equally supported and have a similar structure as D-optimal designs for 2-variable model.In addition to single objective optimal designs, I apply PSO to find optimal designs for estimating parameters and interesting characteristics continuation-ratio (CR) model with non-constant slopes. Such a model has a great potential in dose finding studies because it takes both efficacy and toxicity into consideration. The optimal design I am interested in constructing is a three-objective optimal design, which provides efficient estimates for efficacy, adverse effect and all parameters in the CR model. This work is quite new because there are virtually no three-objective designs for a trinomial model reported in the literature. Through multiple objective efficiency plots, practitioners can construct the desired compound optimal design by selecting appropriate weighted average of three optimal criteria in a more flexible and informative way.I also conduct simulation studies for parameters selection in PSO, and compare the performance of PSO with other popular deterministic and metaheuristic algorithms in terms of the CPU time and the precision of the generated designs. I show that PSO outperforms its competitors for finding D- and c-optimal designs for different models I considered in my dissertation." @default.
- W993695213 created "2016-06-24" @default.
- W993695213 creator A5060982767 @default.
- W993695213 date "2014-01-01" @default.
- W993695213 modified "2023-09-27" @default.
- W993695213 title "FINDING OPTIMAL EXPERIMENTAL DESIGNS FOR MODELS IN BIOMEDICAL STUDIES VIA PARTICLE SWARM OPTIMIZATION" @default.
- W993695213 cites W1497256448 @default.
- W993695213 cites W153081093 @default.
- W993695213 cites W1545323340 @default.
- W993695213 cites W1548110443 @default.
- W993695213 cites W1554205984 @default.
- W993695213 cites W1578249005 @default.
- W993695213 cites W1583562684 @default.
- W993695213 cites W1595159159 @default.
- W993695213 cites W1626261442 @default.
- W993695213 cites W1875348914 @default.
- W993695213 cites W1963773346 @default.
- W993695213 cites W1965911876 @default.
- W993695213 cites W1974112229 @default.
- W993695213 cites W1975437331 @default.
- W993695213 cites W1982335527 @default.
- W993695213 cites W1982392262 @default.
- W993695213 cites W1983261599 @default.
- W993695213 cites W1990505572 @default.
- W993695213 cites W1996351009 @default.
- W993695213 cites W1998123344 @default.
- W993695213 cites W2004646768 @default.
- W993695213 cites W2012186479 @default.
- W993695213 cites W2017351261 @default.
- W993695213 cites W2017826290 @default.
- W993695213 cites W2024060531 @default.
- W993695213 cites W2030702093 @default.
- W993695213 cites W2037224035 @default.
- W993695213 cites W2039220745 @default.
- W993695213 cites W2039396413 @default.
- W993695213 cites W2052419969 @default.
- W993695213 cites W2056760934 @default.
- W993695213 cites W2057691548 @default.
- W993695213 cites W2064868327 @default.
- W993695213 cites W2072788340 @default.
- W993695213 cites W2075562155 @default.
- W993695213 cites W2076845481 @default.
- W993695213 cites W2080376342 @default.
- W993695213 cites W2086157133 @default.
- W993695213 cites W2087026810 @default.
- W993695213 cites W2090659723 @default.
- W993695213 cites W2091534912 @default.
- W993695213 cites W2103562758 @default.
- W993695213 cites W2108063263 @default.
- W993695213 cites W2108388069 @default.
- W993695213 cites W2122977598 @default.
- W993695213 cites W2130029189 @default.
- W993695213 cites W2144578442 @default.
- W993695213 cites W2145113795 @default.
- W993695213 cites W2148559864 @default.
- W993695213 cites W2151554678 @default.
- W993695213 cites W2152195021 @default.
- W993695213 cites W2163199665 @default.
- W993695213 cites W2166146242 @default.
- W993695213 cites W2171585741 @default.
- W993695213 cites W2185613513 @default.
- W993695213 cites W2206353369 @default.
- W993695213 cites W2315885933 @default.
- W993695213 cites W2330464050 @default.
- W993695213 cites W2520636762 @default.
- W993695213 cites W3097925195 @default.
- W993695213 cites W3098355515 @default.
- W993695213 cites W3105687256 @default.
- W993695213 cites W32040229 @default.
- W993695213 cites W588037209 @default.
- W993695213 hasPublicationYear "2014" @default.
- W993695213 type Work @default.
- W993695213 sameAs 993695213 @default.
- W993695213 citedByCount "0" @default.
- W993695213 crossrefType "journal-article" @default.
- W993695213 hasAuthorship W993695213A5060982767 @default.
- W993695213 hasConcept C114289077 @default.
- W993695213 hasConcept C119857082 @default.
- W993695213 hasConcept C126255220 @default.
- W993695213 hasConcept C134306372 @default.
- W993695213 hasConcept C154945302 @default.
- W993695213 hasConcept C173801870 @default.
- W993695213 hasConcept C182365436 @default.
- W993695213 hasConcept C184898388 @default.
- W993695213 hasConcept C186394612 @default.
- W993695213 hasConcept C33923547 @default.
- W993695213 hasConcept C41008148 @default.
- W993695213 hasConcept C85617194 @default.
- W993695213 hasConceptScore W993695213C114289077 @default.
- W993695213 hasConceptScore W993695213C119857082 @default.
- W993695213 hasConceptScore W993695213C126255220 @default.
- W993695213 hasConceptScore W993695213C134306372 @default.
- W993695213 hasConceptScore W993695213C154945302 @default.
- W993695213 hasConceptScore W993695213C173801870 @default.
- W993695213 hasConceptScore W993695213C182365436 @default.
- W993695213 hasConceptScore W993695213C184898388 @default.
- W993695213 hasConceptScore W993695213C186394612 @default.
- W993695213 hasConceptScore W993695213C33923547 @default.
- W993695213 hasConceptScore W993695213C41008148 @default.
- W993695213 hasConceptScore W993695213C85617194 @default.