Matches in SemOpenAlex for { <https://semopenalex.org/work/W994671503> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W994671503 abstract "Group probability classifier learning is an emerging and promising learning technique, especially in privacy-preserving data mining. It is used to train a classifier from a group probability dataset, where the class labels of each sample are unknown while the probabilities of each class in the given data groups of the whole dataset are available. The existing work is mainly based on the inverse calibration (IC) strategy to obtain the estimated labels for data in the group probability dataset and then make use of classical classification algorithms such as support vector machine (SVM) model to train the desired classifier. A critical challenge of the exiting IC-based methods lies in the difficulty of designing an ideal IC function for label estimation and the methods are sensitive to the adopted IC function. In order to overcome this shortcoming, a novel probability transductive classifier that does not involve IC in the learning procedure is proposed, where the probability values are directly used as the output of the training data for the model training. Particularly, on the training data with the output being continuous real values, the existing classical regression model can be easily adopted to model the group probability classification problem. For a future testing data, the model output of the obtained group probability classification model can present the probability that the testing data belong to the positive class. With a given threshold, the final class label of the testing data can be obtained for the classification task. The experimental results on synthetic datasets and real UCI datasets show that the proposed method is more effective than the existing methods." @default.
- W994671503 created "2016-06-24" @default.
- W994671503 creator A5003183751 @default.
- W994671503 creator A5018829722 @default.
- W994671503 creator A5042607110 @default.
- W994671503 creator A5048680068 @default.
- W994671503 creator A5051886730 @default.
- W994671503 creator A5068828491 @default.
- W994671503 date "2015-10-05" @default.
- W994671503 modified "2023-09-26" @default.
- W994671503 title "A novel privacy-preserving probability transductive classifiers from group probabilities based on regression model" @default.
- W994671503 cites W2019207321 @default.
- W994671503 cites W2042231795 @default.
- W994671503 cites W2062907052 @default.
- W994671503 cites W2080404350 @default.
- W994671503 cites W2095910574 @default.
- W994671503 cites W2098263691 @default.
- W994671503 cites W2098986246 @default.
- W994671503 cites W2138238457 @default.
- W994671503 cites W2139212933 @default.
- W994671503 cites W2142904341 @default.
- W994671503 cites W2150200785 @default.
- W994671503 cites W2151040995 @default.
- W994671503 cites W2156383341 @default.
- W994671503 cites W2158247472 @default.
- W994671503 doi "https://doi.org/10.3233/ifs-151621" @default.
- W994671503 hasPublicationYear "2015" @default.
- W994671503 type Work @default.
- W994671503 sameAs 994671503 @default.
- W994671503 citedByCount "1" @default.
- W994671503 countsByYear W9946715032019 @default.
- W994671503 crossrefType "journal-article" @default.
- W994671503 hasAuthorship W994671503A5003183751 @default.
- W994671503 hasAuthorship W994671503A5018829722 @default.
- W994671503 hasAuthorship W994671503A5042607110 @default.
- W994671503 hasAuthorship W994671503A5048680068 @default.
- W994671503 hasAuthorship W994671503A5051886730 @default.
- W994671503 hasAuthorship W994671503A5068828491 @default.
- W994671503 hasConcept C119857082 @default.
- W994671503 hasConcept C12267149 @default.
- W994671503 hasConcept C124101348 @default.
- W994671503 hasConcept C153180895 @default.
- W994671503 hasConcept C154945302 @default.
- W994671503 hasConcept C41008148 @default.
- W994671503 hasConcept C95623464 @default.
- W994671503 hasConceptScore W994671503C119857082 @default.
- W994671503 hasConceptScore W994671503C12267149 @default.
- W994671503 hasConceptScore W994671503C124101348 @default.
- W994671503 hasConceptScore W994671503C153180895 @default.
- W994671503 hasConceptScore W994671503C154945302 @default.
- W994671503 hasConceptScore W994671503C41008148 @default.
- W994671503 hasConceptScore W994671503C95623464 @default.
- W994671503 hasLocation W9946715031 @default.
- W994671503 hasOpenAccess W994671503 @default.
- W994671503 hasPrimaryLocation W9946715031 @default.
- W994671503 hasRelatedWork W145653800 @default.
- W994671503 hasRelatedWork W1527373413 @default.
- W994671503 hasRelatedWork W1760702393 @default.
- W994671503 hasRelatedWork W1966719892 @default.
- W994671503 hasRelatedWork W1968823131 @default.
- W994671503 hasRelatedWork W2005386510 @default.
- W994671503 hasRelatedWork W2012942264 @default.
- W994671503 hasRelatedWork W2021881393 @default.
- W994671503 hasRelatedWork W2024034278 @default.
- W994671503 hasRelatedWork W2055948265 @default.
- W994671503 hasRelatedWork W2064460620 @default.
- W994671503 hasRelatedWork W2095704811 @default.
- W994671503 hasRelatedWork W2115036678 @default.
- W994671503 hasRelatedWork W2389219395 @default.
- W994671503 hasRelatedWork W2527527138 @default.
- W994671503 hasRelatedWork W2742248641 @default.
- W994671503 hasRelatedWork W2784175621 @default.
- W994671503 hasRelatedWork W3100707783 @default.
- W994671503 hasRelatedWork W2245707192 @default.
- W994671503 hasRelatedWork W2560147515 @default.
- W994671503 isParatext "false" @default.
- W994671503 isRetracted "false" @default.
- W994671503 magId "994671503" @default.
- W994671503 workType "article" @default.