Matches in SemOpenAlex for { <https://semopenalex.org/work/W99672764> ?p ?o ?g. }
- W99672764 endingPage "113" @default.
- W99672764 startingPage "113" @default.
- W99672764 abstract "Chance constrained problems are optimization problems where one or more constraints ensure that the probability of one or more events occurring is less than a prescribed threshold. Although it is typically assumed that the distribution defining the chance constraints are known perfectly; in practice this assumption is unwarranted. We study chance constrained problems where the underlying distributions are not completely specified and are assumed to belong to an uncertainty set Q . We call such problems chance constrained problems. We focus primarily on the special case where the uncertainty set Q of the distributions is of the form Q=Q:rp Q,Q0 ≤b , where ρp denotes the Prohorov metric. We study single and two stage ambiguous chance constrained programs. The single stage ambiguous chance constrained problem is approximated by a robust sampled problem where each constraint is a robust constraint centered at a sample drawn according to the central measure Q0 . We show that the robust sampled problem is a good approximation for the ambiguous chance constrained problem with a high probability. This result is established using the Strassen-Dudley Representation Theorem. We also show that the robust sampled problem can be solved efficiently both in theory and in practice. Nemirovski and Shapiro [61] formulated two-stage convex chance constrained programs and proposed an ellipsoid-like iterative algorithm for the special case where the impact function f(x, h) is bi-affine. We show that this algorithm extends to bi-convex f(x, h ) in a fairly straightforward fashion. The complexity of the solution algorithm as well as the quality of its output are functions of the radius r of the largest Euclidean ball that can be inscribed in the polytope defined by a random set of linear inequalities generated by the algorithm [61]. In this dissertation we provide some guidance for selecting r. We develop an approximation algorithm to two-stage ambiguous chance constrained programs when the impact function f(x, h) is bi-affine and the extreme points of a certain dual polytope are known explicitly." @default.
- W99672764 created "2016-06-24" @default.
- W99672764 creator A5029998274 @default.
- W99672764 creator A5052603724 @default.
- W99672764 date "2007-01-01" @default.
- W99672764 modified "2023-09-23" @default.
- W99672764 title "Ambiguous chance constrained programs: algorithms and applications" @default.
- W99672764 cites W1503221585 @default.
- W99672764 cites W1520252399 @default.
- W99672764 cites W1531335330 @default.
- W99672764 cites W1534455786 @default.
- W99672764 cites W1539402525 @default.
- W99672764 cites W1594103238 @default.
- W99672764 cites W1602822304 @default.
- W99672764 cites W1762430620 @default.
- W99672764 cites W1878131045 @default.
- W99672764 cites W1969531736 @default.
- W99672764 cites W1970226744 @default.
- W99672764 cites W1971867489 @default.
- W99672764 cites W1982141993 @default.
- W99672764 cites W1987898022 @default.
- W99672764 cites W1995285162 @default.
- W99672764 cites W2001516476 @default.
- W99672764 cites W2004220372 @default.
- W99672764 cites W2006041100 @default.
- W99672764 cites W2007668370 @default.
- W99672764 cites W2012712694 @default.
- W99672764 cites W2013006982 @default.
- W99672764 cites W2014838276 @default.
- W99672764 cites W2032916024 @default.
- W99672764 cites W2033040247 @default.
- W99672764 cites W2035238076 @default.
- W99672764 cites W2038407338 @default.
- W99672764 cites W2039150177 @default.
- W99672764 cites W2044233090 @default.
- W99672764 cites W2046396733 @default.
- W99672764 cites W2057609912 @default.
- W99672764 cites W2065114871 @default.
- W99672764 cites W2066503680 @default.
- W99672764 cites W2069099760 @default.
- W99672764 cites W2070589948 @default.
- W99672764 cites W2072719364 @default.
- W99672764 cites W2083543651 @default.
- W99672764 cites W2084575717 @default.
- W99672764 cites W2089105401 @default.
- W99672764 cites W2093115910 @default.
- W99672764 cites W2105235982 @default.
- W99672764 cites W2117781171 @default.
- W99672764 cites W2127470768 @default.
- W99672764 cites W2137356045 @default.
- W99672764 cites W2142092335 @default.
- W99672764 cites W2143863355 @default.
- W99672764 cites W2146444777 @default.
- W99672764 cites W2150005857 @default.
- W99672764 cites W2154952480 @default.
- W99672764 cites W2156909104 @default.
- W99672764 cites W2158479468 @default.
- W99672764 cites W2168565265 @default.
- W99672764 cites W2174883827 @default.
- W99672764 cites W2254463431 @default.
- W99672764 cites W2277352315 @default.
- W99672764 cites W2798344481 @default.
- W99672764 cites W3121755526 @default.
- W99672764 cites W3124786567 @default.
- W99672764 cites W3125997868 @default.
- W99672764 cites W3143187486 @default.
- W99672764 cites W55939935 @default.
- W99672764 cites W66590886 @default.
- W99672764 cites W88909337 @default.
- W99672764 cites W99724449 @default.
- W99672764 cites W134765355 @default.
- W99672764 hasPublicationYear "2007" @default.
- W99672764 type Work @default.
- W99672764 sameAs 99672764 @default.
- W99672764 citedByCount "0" @default.
- W99672764 crossrefType "journal-article" @default.
- W99672764 hasAuthorship W99672764A5029998274 @default.
- W99672764 hasAuthorship W99672764A5052603724 @default.
- W99672764 hasConcept C105795698 @default.
- W99672764 hasConcept C112680207 @default.
- W99672764 hasConcept C11413529 @default.
- W99672764 hasConcept C12108790 @default.
- W99672764 hasConcept C121332964 @default.
- W99672764 hasConcept C126255220 @default.
- W99672764 hasConcept C1276947 @default.
- W99672764 hasConcept C137836250 @default.
- W99672764 hasConcept C14036430 @default.
- W99672764 hasConcept C149441793 @default.
- W99672764 hasConcept C157972887 @default.
- W99672764 hasConcept C177264268 @default.
- W99672764 hasConcept C193254401 @default.
- W99672764 hasConcept C199360897 @default.
- W99672764 hasConcept C205451395 @default.
- W99672764 hasConcept C2524010 @default.
- W99672764 hasConcept C2776036281 @default.
- W99672764 hasConcept C33923547 @default.
- W99672764 hasConcept C41008148 @default.
- W99672764 hasConcept C57489055 @default.