Matches in SemOpenAlex for { <https://semopenalex.org/work/W996801710> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W996801710 endingPage "84" @default.
- W996801710 startingPage "75" @default.
- W996801710 abstract "Learning models used for prediction purposes are mostly developed without paying much cognizance to the size of datasetsthat can produce models of high accuracy andbetter generalization. Although, the general believe is that, large dataset is needed to construct a predictive learning model. To describe adata setas large in size, perhaps, iscircumstance dependent, thus, what constitutesa dataset to be considered as being big or small is vague.In this paper, the ability of predictive model to generalize with respect to a particular size of data when simulated with new untrained input is examined. The study experiments on three different sizes of data using Matlab programto create predictive models with a view to establishing if the sizeof data has any effect on the accuracy of a model.The simulated output of each model is measured using theMeanAbsolute Error (MAE) and comparisons are made. Findings from this study reveals that, the quantity of data partitioned for the purpose of training must be of goodrepresentation of the entire sets and sufficient enough to span through the input space. The results of simulating the three network models also shows that, the learning modelwith the largest size of training setsappearsto be the most accurate and consistently delivers a much better and stable results." @default.
- W996801710 created "2016-06-24" @default.
- W996801710 creator A5013127276 @default.
- W996801710 creator A5026604829 @default.
- W996801710 creator A5047002005 @default.
- W996801710 creator A5076349185 @default.
- W996801710 date "2015-02-15" @default.
- W996801710 modified "2023-09-25" @default.
- W996801710 title "EVALUATING THE EFFECT OF DATASET SIZE ON PREDICTIVE MODEL USING SUPERVISED LEARNING TECHNIQUE" @default.
- W996801710 cites W1569512666 @default.
- W996801710 cites W1570448133 @default.
- W996801710 cites W1602160603 @default.
- W996801710 cites W1736726159 @default.
- W996801710 cites W1997067024 @default.
- W996801710 cites W2017272318 @default.
- W996801710 cites W2092095117 @default.
- W996801710 cites W2099832063 @default.
- W996801710 cites W2116483595 @default.
- W996801710 cites W2133838144 @default.
- W996801710 cites W2144729270 @default.
- W996801710 cites W2150364563 @default.
- W996801710 cites W2160619172 @default.
- W996801710 cites W2162807413 @default.
- W996801710 cites W2290063373 @default.
- W996801710 cites W2440573849 @default.
- W996801710 cites W568338201 @default.
- W996801710 doi "https://doi.org/10.15282/ijsecs.1.2015.6.0006" @default.
- W996801710 hasPublicationYear "2015" @default.
- W996801710 type Work @default.
- W996801710 sameAs 996801710 @default.
- W996801710 citedByCount "35" @default.
- W996801710 countsByYear W9968017102017 @default.
- W996801710 countsByYear W9968017102020 @default.
- W996801710 countsByYear W9968017102021 @default.
- W996801710 countsByYear W9968017102022 @default.
- W996801710 countsByYear W9968017102023 @default.
- W996801710 crossrefType "journal-article" @default.
- W996801710 hasAuthorship W996801710A5013127276 @default.
- W996801710 hasAuthorship W996801710A5026604829 @default.
- W996801710 hasAuthorship W996801710A5047002005 @default.
- W996801710 hasAuthorship W996801710A5076349185 @default.
- W996801710 hasBestOaLocation W9968017101 @default.
- W996801710 hasConcept C119857082 @default.
- W996801710 hasConcept C154945302 @default.
- W996801710 hasConcept C41008148 @default.
- W996801710 hasConceptScore W996801710C119857082 @default.
- W996801710 hasConceptScore W996801710C154945302 @default.
- W996801710 hasConceptScore W996801710C41008148 @default.
- W996801710 hasIssue "1" @default.
- W996801710 hasLocation W9968017101 @default.
- W996801710 hasLocation W9968017102 @default.
- W996801710 hasOpenAccess W996801710 @default.
- W996801710 hasPrimaryLocation W9968017101 @default.
- W996801710 hasRelatedWork W2961085424 @default.
- W996801710 hasRelatedWork W3046775127 @default.
- W996801710 hasRelatedWork W3170094116 @default.
- W996801710 hasRelatedWork W3209574120 @default.
- W996801710 hasRelatedWork W4205958290 @default.
- W996801710 hasRelatedWork W4285260836 @default.
- W996801710 hasRelatedWork W4286629047 @default.
- W996801710 hasRelatedWork W4306321456 @default.
- W996801710 hasRelatedWork W4306674287 @default.
- W996801710 hasRelatedWork W4224009465 @default.
- W996801710 hasVolume "1" @default.
- W996801710 isParatext "false" @default.
- W996801710 isRetracted "false" @default.
- W996801710 magId "996801710" @default.
- W996801710 workType "article" @default.