Matches in SemOpenAlex for { <https://semopenalex.org/work/W99895786> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W99895786 abstract "In this paper we will investigate how the local errors accumulate to the global error in Lie group methods for linear ODEs. The concept of the local and global errors has to be redefined to fit in the framework of Lie groups and algebras. Formulas for tracking the global error are proposed and demonstrated on numerical examples. AMS subject classifications. 65L05 1. Introduction. Among all properties that come with the numerical solution of the initial value problem in ordinary differential equations ( ODEs), small global error is usually the most important. If the global error of the computed solut ion is small enough on the interval of interest, other properties of the solution, such as corre ct asymptotic behavior, conservation of invariants, or retaining the geometric structure, becom e less important. In this paper, we will focus on the case when the global error i s small. The reason for this is at least twofold: first, as the numerical solution is c lose to the exact solution, we expect to observe similar dynamics of both solutions, while the behavior of the global error can be more unpredictable, when the distance between both solutions becomes larger. Second, the global error estimate can be used for the step-size control a nd large global error indicates that the step-size control failed. How large the global error can be before it is too large depends on the problem we are solving. In this paper we will consider the global error too large, if the exact and numerical solutions at a certain value of the indep endent variable cannot be covered with the same coordinate chart of the solution manifold. The global error at a certain point t is usually a consequence of local errors committed at each step from the initial point up to t. How the local errors are accumulating into the global error depends on the differential equation, on the numerica l method, and on the step-size selection. While we have some control over the size of the local errors during the process of solving an ODE, the global errors are usually beyond our reach. The connection between global and local errors and possible methods for controlling the global error directly has inspired a lot of research in recen t years. Highham (10) analyzed the connection between the error tolerance and the global er ror in the case of Runge-Kutta methods. Dormand et al. (6) proposed global embedding Runge-Kutta schemes for step-size control based on the estimation of the global error. Calvo et al. (1) studied methods for the global error estimation in the presence of the step-size selection mechanism for Runge- Kutta methods. Stuart (25) analyzed tolerance proportionality of the global error in Runge- Kutta methods. Viswanath (26) was concerned with situations where the usual exponential growth of the global error can be replaced by a less pessimist ic one. Onumanyi et al. (22) studied global error estimates for the finite difference met hods for initial and boundary value problems. Kulikov and Shindin were concerned with estimates for the local and global errors of linear multi-step methods with constant coefficients and fixed step-size in ( 17), and linear multi-step methods combined with Hermite type interpolation in (18). Cao and Petzold (3)" @default.
- W99895786 created "2016-06-24" @default.
- W99895786 creator A5016157216 @default.
- W99895786 date "2010-01-01" @default.
- W99895786 modified "2023-09-27" @default.
- W99895786 title "ACCUMULATION OF GLOBAL ERROR IN LIE GROUP METHODS FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS" @default.
- W99895786 cites W1570526493 @default.
- W99895786 cites W1602423653 @default.
- W99895786 cites W1624156688 @default.
- W99895786 cites W1661172117 @default.
- W99895786 cites W166782598 @default.
- W99895786 cites W1967222150 @default.
- W99895786 cites W1969222556 @default.
- W99895786 cites W1985923863 @default.
- W99895786 cites W1993434194 @default.
- W99895786 cites W2006346854 @default.
- W99895786 cites W2016012557 @default.
- W99895786 cites W2023137937 @default.
- W99895786 cites W2039763880 @default.
- W99895786 cites W2061356302 @default.
- W99895786 cites W2073141739 @default.
- W99895786 cites W2079763265 @default.
- W99895786 cites W2081416965 @default.
- W99895786 cites W2153279527 @default.
- W99895786 cites W2161377326 @default.
- W99895786 cites W2168771200 @default.
- W99895786 cites W2496593400 @default.
- W99895786 cites W2962811951 @default.
- W99895786 cites W3209416867 @default.
- W99895786 hasPublicationYear "2010" @default.
- W99895786 type Work @default.
- W99895786 sameAs 99895786 @default.
- W99895786 citedByCount "1" @default.
- W99895786 countsByYear W998957862017 @default.
- W99895786 crossrefType "journal-article" @default.
- W99895786 hasAuthorship W99895786A5016157216 @default.
- W99895786 hasConcept C114614502 @default.
- W99895786 hasConcept C120665830 @default.
- W99895786 hasConcept C121332964 @default.
- W99895786 hasConcept C122383733 @default.
- W99895786 hasConcept C134306372 @default.
- W99895786 hasConcept C192209626 @default.
- W99895786 hasConcept C26955809 @default.
- W99895786 hasConcept C2778067643 @default.
- W99895786 hasConcept C2781311116 @default.
- W99895786 hasConcept C28826006 @default.
- W99895786 hasConcept C33923547 @default.
- W99895786 hasConcept C34862557 @default.
- W99895786 hasConcept C51544822 @default.
- W99895786 hasConcept C61005703 @default.
- W99895786 hasConcept C62520636 @default.
- W99895786 hasConcept C78045399 @default.
- W99895786 hasConceptScore W99895786C114614502 @default.
- W99895786 hasConceptScore W99895786C120665830 @default.
- W99895786 hasConceptScore W99895786C121332964 @default.
- W99895786 hasConceptScore W99895786C122383733 @default.
- W99895786 hasConceptScore W99895786C134306372 @default.
- W99895786 hasConceptScore W99895786C192209626 @default.
- W99895786 hasConceptScore W99895786C26955809 @default.
- W99895786 hasConceptScore W99895786C2778067643 @default.
- W99895786 hasConceptScore W99895786C2781311116 @default.
- W99895786 hasConceptScore W99895786C28826006 @default.
- W99895786 hasConceptScore W99895786C33923547 @default.
- W99895786 hasConceptScore W99895786C34862557 @default.
- W99895786 hasConceptScore W99895786C51544822 @default.
- W99895786 hasConceptScore W99895786C61005703 @default.
- W99895786 hasConceptScore W99895786C62520636 @default.
- W99895786 hasConceptScore W99895786C78045399 @default.
- W99895786 hasLocation W998957861 @default.
- W99895786 hasOpenAccess W99895786 @default.
- W99895786 hasPrimaryLocation W998957861 @default.
- W99895786 hasRelatedWork W116634318 @default.
- W99895786 hasRelatedWork W145033235 @default.
- W99895786 hasRelatedWork W155887554 @default.
- W99895786 hasRelatedWork W1728790801 @default.
- W99895786 hasRelatedWork W1759707407 @default.
- W99895786 hasRelatedWork W1831216351 @default.
- W99895786 hasRelatedWork W1981395343 @default.
- W99895786 hasRelatedWork W1981898438 @default.
- W99895786 hasRelatedWork W1986483786 @default.
- W99895786 hasRelatedWork W2009633673 @default.
- W99895786 hasRelatedWork W2026099160 @default.
- W99895786 hasRelatedWork W2036148379 @default.
- W99895786 hasRelatedWork W2040497837 @default.
- W99895786 hasRelatedWork W204284478 @default.
- W99895786 hasRelatedWork W2100028319 @default.
- W99895786 hasRelatedWork W2112888839 @default.
- W99895786 hasRelatedWork W2179680528 @default.
- W99895786 hasRelatedWork W2485996652 @default.
- W99895786 hasRelatedWork W2547233304 @default.
- W99895786 hasRelatedWork W2565934447 @default.
- W99895786 isParatext "false" @default.
- W99895786 isRetracted "false" @default.
- W99895786 magId "99895786" @default.
- W99895786 workType "article" @default.